주 메뉴 열기

수학에서, 거리 공간(距離空間, 영어: metric space)은 두 점 사이의 거리가 정의된 공간이다. 거리의 정의에 따라 표준적인 위상(위상공간)을 갖는다.

정의편집

집합   위의 거리 함수(距離函數, 영어: metric function)는 다음 조건을 만족시키는 함수

 

이다.

  • (구분 불가능한 점의 동일성) 임의의  에 대하여,  
  • (대칭성) 임의의  에 대하여,  
  • (삼각 부등식) 임의의  에 대하여,  

마지막 두 공리는 다음과 같은 하나의 공리로 대체시킬 수 있다.

  • (삼각 부등식)  

여기서  로 잡으면  가 되어, 대칭 공리를 얻는다. 거리 함수의 정의에서, 첫째 조건을  로 약화시키면 유사 거리 함수의 개념을 얻는다.

거리 공간  은 거리 함수가 주어진 집합이다.

거리 공간의 특별한 집합편집

거리 공간  에서, 점  를 중심으로 하는, 반지름이  열린 공  는 다음과 같다.

 

 를 중심으로 하는, 반지름이  닫힌 공  는 다음과 같다.

 

거리 공간  유계 집합  는 다음 조건을 만족시키는 부분 집합이다.

  •  인 점  가 존재한다.

거리 위상편집

거리 공간  거리 위상(距離位相, 영어: metric topology)은  시작 위상이다. 즉, 열린 공들을 기저로 하는 위상이다. 즉, 거리 위상에서의 열린집합은 다음 조건을 만족시키는 부분 집합  이다.

모든  에 대하여,   가 존재한다.

이에 따라 모든 거리 공간은 일반적으로 위상 공간을 이룬다.

완비 거리 공간편집

모든 코시 수열이 극한을 갖는 거리 공간을 완비 거리 공간이라고 한다.

지름편집

거리 공간  지름(영어: diameter)  는 그 속의 두 점 사이의 가능한 거리들의 상한이다.

 

마찬가지로, 거리 공간의 부분 공간은 거리 공간을 이루므로 그 지름을 정의할 수 있다.

지름이 유한한 거리 공간을 유계 공간이라고 한다.

성질편집

거리 공간  의 임의의 부분 집합  에 대하여,  는 거리 공간을 이룬다.

위상수학적 성질편집

모든 거리 공간은 다음 성질들을 만족시킨다.

거리 공간  에 대하여, 다음 조건들이 서로 동치이다.

편집

  • 실수  에서, 거리가 절댓값을 이용하여,  로 정의되었을 때,  는 완비 거리 공간이다.
  • 유리수의 집합  은 실수 거리 공간의 부분 공간으로서 거리 공간을 이룬다. 그러나 이는 완비 거리 공간이 아니다.
  • 유클리드 공간에서,  에서, 거리를  로 정의하면,  는 거리 공간이다. 이렇게 정의된 거리를 유클리드 거리, 이 공간을 n차원 유클리드 공간이라 하며, 보통 자연과학에서 말하는 거리는 이 정의를 따른다. 이는 완비 거리 공간을 이룬다.
  •  에서  을 거리로 정의하면,  는 거리공간이다. 이처럼 같은 집합에 대하여 정의가 가능한 거리는 유일하지 않다. 그러나 두 가지 거리 함수는 같은 위상을 정의한다.

노름 공간  에 대하여, 거리 함수를

 

로 정의한다면,  는 거리 공간이다. 마찬가지로, 노름 공간  에 대하여 거리 함수를

 

로 정의한다면,  는 거리 공간이다. 이 거리 함수를 우체국 거리(영어: post-office metric)라고 한다.

임의의 연결 리만 다양체  에 대하여, 거리 함수를

 

로 정의한다면,  는 거리 공간이다.

임의의 집합   및 양의 실수  에 대하여,

 

초거리 함수를 이룬다. 이를 이산 거리 함수라고 한다.

임의의 연결 그래프  에 대하여, 두 꼭짓점 사이의 거리를 이 두 점을 잇는 경로들의 길이의 최솟값으로 정의한다면, 이는 꼭짓점들의 집합 위의 거리 함수를 이룬다.

참고 문헌편집

같이 보기편집

외부 링크편집