누적 분포 함수

확률론에서, 누적 분포 함수(累積分布函數, 영어: cumulative distribution function, 약자 cdf)는 주어진 확률 변수가 특정 값보다 작거나 같은 확률을 나타내는 함수이다.

정규 분포의 누적 분포 함수

정의편집

확률 공간   위의 실숫값 확률 변수  (우연속) 누적 분포 함수  는 다음과 같다.

 

보다 일반적으로, 확률 공간   위의 실숫값 확률 벡터  (우연속) 누적 분포 함수  는 다음과 같다.

 

위 정의에 등장하는 반닫힌구간들을 열린구간으로 대체하면 좌연속 누적 분포 함수의 정의를 얻는다.

성질편집

함수로서의 성질편집

임의의 함수  에 대하여, 다음 두 조건이 서로 동치이다.

  •  는 어떤 확률 변수의 누적 분포 함수이다.
  • 다음 조건들을 만족시킨다.
    • (증가 함수) 만약  이며  라면,  
    • (우연속 함수) 임의의  에 대하여,  
    •  
    •  

여기서  우극한이며,   는 음과 양의 무한대에서의 극한이다.

보다 일반적으로, 임의의 함수  에 대하여, 다음 두 조건이 서로 동치이다.

  •  는 어떤 확률 벡터의 누적 분포 함수이다.
  • 다음 조건들을 만족시킨다.
    • 만약  이며  이라면,  . (이 조건과 세 번째 조건은  가 각 변수에 대하여 증가 함수임을 함의한다.)
    • (우연속 함수) 임의의  에 대하여,  
    • 임의의   에 대하여,  
    •  

여기서

 
 
 

이다.

확률 분포와의 관계편집

확률 변수 또는 확률 벡터의 누적 분포 함수는 그 확률 분포를 유일하게 결정한다. 이는 누적 분포 함수에 대한 르베그-스틸티어스 측도와 일치한다. 그러나 누적 분포 함수는 확률 변수 자체를 유일하게 결정하지는 않는다.

확률 변수  가 구간  에 속할 확률과 특정 실수  를 취할 확률은 누적 분포 함수  를 통해 각각 다음과 같이 나타낼 수 있다.

 
 

보다 일반적으로, 확률 벡터   에 속할 확률과 특정 값  을 취할 확률은 각각 다음과 같다.

 
 

이산성·연속성·특이성과의 관계편집

 
이산 확률 분포, 연속 확률 분포, 이산적인 부분과 연속적인 부분이 모두 존재하는 분포에 대한 각각의 누적 분포 함수

확률 변수  에 대하여, 다음 두 조건이 서로 동치이다.

  •  이산 확률 변수이다. (즉,  가산 집합  이 존재한다.)
  •  

특히, 계단 함수를 누적 분포 함수로 하는 확률 변수이산 확률 변수이다. 그러나 그 역은 성립하지 않는다.

확률 변수  에 대하여, 다음 두 조건이 서로 동치이다.

  •  연속 확률 변수이다. (즉, 임의의  에 대하여,  이다.)
  •  연속 함수이다.

확률 변수  에 대하여, 다음 두 조건이 서로 동치이다.

확률 변수  에 대하여, 다음 두 조건이 서로 동치이다.

임의의 누적 분포 함수  는 이산 누적 분포 함수  와 절대 연속 누적 분포 함수  , 특이 연속 누적 분포 함수  의 음이 아닌 계수의 아핀 결합으로 나타낼 수 있다.

 
 
 

독립성과의 관계편집

같은 확률 공간 위의 확률 변수 또는 확률 벡터들의 집합  에 대하여, 다음 두 조건이 서로 동치이다.

  •  는 서로 독립이다.
  • 임의의 서로 다른   및 임의의   ( )에 대하여,  

증명:

첫 번째 조건은 두 번째 조건을 자명하게 함의한다. 이제 두 번째 조건을 가정하고 첫 번째 조건을 증명하자. 유한 개의 확률 변수

 
 

의 경우의 증명은 다음과 같다. 일반적인 경우는 이와 유사하게 증명할 수 있다.

 

라고 하자. 그렇다면  π계를 이루며,   를 포함하는 최소의 시그마 대수이다. 다음과 같은 집합을 생각하자.

 

그렇다면, 가정한 조건에 따라  이다. 또한,  λ계를 이룸을 보일 수 있다. 딘킨 π-λ 정리에 따라,  이다. 이제, 다음과 같은 집합을 생각하자.

 

그렇다면,  이므로  이며,  λ계를 이룬다. 따라서  이다. 이와 같은 과정을 반복하면 결국 임의의  에 대하여,

 

이라는 사실을 얻는다. 즉,  은 서로 독립이다.

참고 문헌편집

외부 링크편집