주 메뉴 열기

게이지 이론에서, 윌슨 고리(Wilson loop)는 게이지 접속홀로노미인 게이지 불변 관측가능량이다.

정의편집

게이지 퍼텐셜  를 가진 게이지 이론을 생각하자.  가 게이지 군의 표현이고,  폐곡선이라고 하자.  를 따른 윌슨 고리  는 다음과 같다.

 .

여기서  경로순서(path-ordering) 연산자이다.

대각합 연산자에 의하여, 윌슨 고리는 게이지 불변 연산자이다.

가둠 상전이편집

윌슨 고리는 가두어진 (confined)과 가두어지지 않은 상(deconfinement phase) 사이의 상전이에 대한 질서 변수(order parameter) 역할을 한다. 시간 방향으로 길쭉한 모양의 윌슨 고리(temporal Wilson loop)를 생각하자. 이 경우, 윌슨 고리는 가둠의 존재에 따라 다음과 같은 양상을 보인다. 곡선  가 곡면  를 감싼다고 하면, 윌슨 고리의 로그  

  • 가두어진 상에서는  의 넓이에 비례한다.
  • 가두어지지 않은 상에서는  의 길이 ( 의 둘레)에 비례한다.

이를 넓이 법칙(영어: area law) 또는 둘레 법칙(영어: perimeter law)이라고 부른다. 즉, 윌슨 고리를 계산하여 가둠이 일어나는지 확인할 수 있다.

역사편집

케네스 윌슨가둠을 다루기 위하여 1974년 도입하였다.[1] 1981년에 로스코 자일스(Roscoe Giles)가 윌슨 고리의 데이터만으로 게이지 퍼텐셜 전체를 (고전적으로) 재구성할 수 있다는 사실을 증명하였다.[2]

참고 문헌편집

  1. Wilson, Kenneth G. (1974년 10월 15일). “Confinement of quarks”. 《Physical Review D》 10 (8): 2445–2459. doi:10.1103/PhysRevD.10.2445. 
  2. Giles, R. (1981년 10월 15일). “Reconstruction of gauge potentials from Wilson loops”. 《Physical Review D》 24 (8): 2160–2168. doi:10.1103/PhysRevD.24.2160.