이론물리학에서 이중 장론(二重場論, 영어: double field theory, DFT)은 끈 이론에서 유래하는 고전적 중력 이론의 일종이다.[1] 이 이론은 중력장2차 미분 형식 게이지장을 포함하며, T-이중성을 만족시킨다. T-이중성을 만족시키기 위하여, 차원 시공간을 묘사하기 위하여 차원의 매끄러운 다양체를 사용한다.

전개 편집

시공간 편집

일반적으로, 다음과 같은 데이터를 생각하자.

  •  차원 실수 벡터 공간   및 그 위의 비퇴화 이차 형식  
  • 리 군  . 또한, 다음 가환 그림이 성립한다고 하자.
     
  •  차원 매끄러운 다양체   및 그 접다발의 구조군  . 즉, 어떤  -주다발 (틀다발)  벡터 다발동형 사상  이 주어져 있다.
  • 접다발의,  로의 구조 축소. 즉,  -주다발  벡터 다발동형 사상  .

 접다발 지표를  ,  의 지표를  로 표기하면,  의 데이터는 각 점에서 국소적으로 다음과 같다.

 
 

이제,  는 다음과 같은 준 리만 다양체 구조  를 정의한다. (그 부호수는  의 부호수와 같다.)

 

이제,  에 다음과 같은  -게이지 대칭을 부여하자.

 

그렇다면,  는 각 점에서 물리적으로 동차 공간

 

의 원소를 나타내게 된다. 또한, 계량 텐서  는 ( 이므로) 게이지 불변이다.

이제, 위 구성에서 다음과 같은 특수한 경우를 생각할 수 있다.

이론       물리적 해석
일반 상대성 이론       로런츠 계량 텐서  
이중 장론 ( )        차원 계량 텐서 및  차원 2차 미분 형식

즉,  인 경우는  차원 일반 상대성 이론필바인에 해당한다. 반면,  인 경우, 이는  개의 성분을 가지며, 이는   대칭 행렬(중력장)과   반대칭 행렬(캘브-라몽 장)로 분해될 수 있다.

계량의 분해 편집

구체적으로, 필바인  에 의하여 정의되는 계량 텐서

 

를 생각하자. 물리적으로, 이는 중력장캘브-라몽 장을 나타낸다.

편의상,  를 다음과 같이 만드는 게이지를 선택하자.

 

즉, 이는 분해

 
 
 

를 정의한다. (물론, 이러한 게이지는 일반적으로 유일하지 않다.)

 매끄러운 다양체  의 국소 모형이므로, 이는 마찬가지로 각 점에서 접공간  의 마찬가지 분해

 

를 정의한다.

이러한 게이지에서,  의 원소

 
 

를 정의할 수 있다. 여기서,  중력장을 나타내며,  2차 미분 형식캘브-라몽 장이다.

이 시공간에서는 일반적으로 공변 미분이 존재하지 않는다. 더 엄밀히 말하자면,   와 호환되는 코쥘 접속의 개념을 도입할 수 있지만,[1]:§4.2 크리스토펠 기호의 모든 성분이 물리학적 의미를 갖는 일반 상대성 이론과 달리 이 접속은 물리학적으로 결정되지 않는 성분들을 포함하며,[1]:§4.2, Table 1 이에 따라 임의의 선택이 필요하다. 이에 대한 리만 곡률도 마찬가지다.

필바인 편집

일반 상대성 이론과 마찬가지로, 다음과 같이 필바인을 도입할 수 있다.[1]:(3.52), (3.53) 필바인은 다음과 같은 동차 공간의 원소이다.

 

여기서   의 블록 대각 행렬 부분군이다.

즉, 이는 대표원

 

에 의하여 결정되며, 이는 게이지 변환

 

을 겪는다. 여기서  는 필바인 지표를 뜻한다. 이 대표원에 대응되는 리만 계량 텐서

 

이다.

필바인이 주어졌다면, 다음과 같은 일반화 바이첸뵈크 접속(영어: generalized Weitzenböck connection)을 정의할 수 있다.[1]:(3.59)

 

작용 편집

이중 장론에서는 다음과 같은 작용을 사용한다.[1]:(3.60)

 

여기서

 
 
 

여기서  딜라톤 스칼라장이다. 이는   위의,   구조를 보존하는 미분 동형 사상들을 대칭으로 갖는다.

장방정식 편집

위 작용의 오일러-라그랑주 방정식은 다음과 같다.[1]:(3.81)

 
 

이들은 각각   에 대한 오일러-라그랑주 방정식이다.

단면 조건 편집

  위의 장들은   차원의 매끄러운 다양체 위에 정의된다. 실제 시공간은  차원이므로, 올바른 수의 자유도를 갖추기 위하여 조건을 부여해야 한다. 이는 단면 조건(영어: section condition)이라고 하며, 스칼라장  에 대하여 다음과 같은 꼴이다.[1]:(3.29), (3.30)

 

역사 편집

워런 시걸(영어: Warren Siegel)이 1993년에 도입하였다.[2][3]

각주 편집

  1. Aldazabal, Gerardo; Marqués, Diego; Núñez, Carmen (2013). “Double field theory: a pedagogical review”. 《Classical and Quantum Gravity》 (영어) 30: 163001. arXiv:1305.1907. doi:10.1088/0264-9381/30/16/163001. 
  2. Siegel, Warren (1993). “Superspace duality in low-energy superstrings”. 《Physical Review D》 (영어) 48: 2826. arXiv:hep-th/9305073. 
  3. Siegel, Warren (1993). “Two vierbein formalism for string inspired axionic gravity”. 《Physical Review D》 (영어) 47: 5453. arXiv:hep-th/9302036. 

외부 링크 편집