"훅 법칙"의 두 판 사이의 차이

3 바이트 제거됨 ,  6년 전
편집 요약 없음
잔글 (봇: 인터위키 링크 48 개가 위키데이터d:q170282 항목으로 옮겨짐)
많은 탄성체에서는 변형의 정도가 작을 때 복원력과 변형량 사이에 비례관계가 성립한다. 이것을 그 발견자인 17 세기 영국 물리학자 [[로버트 훅]]의 이름을 기념하여 '''훅 법칙'''이라고 부른다. 훅의 법칙은 판이나 봉의 휨 같은 다차원적인 변형에서도 똑같이 성립된다.
 
매끈하고 수평인 마루 위에 용수철을 둔다. 용수철의 오른쪽 방향을 양의 x 축이라고 하자. 용수철 왼쪽 끝을 고정하고 외력이 없을 때 오른쪽왼쪽 끝의 위치를 x 의 원점으로 잡자. 용수철 길이가 변했을 때, 오른쪽 끝의 x [[좌표]]로 변형 상태를 나타내기로 한다. x > 0 이면 늘어난 것이고, x < 0 이면 줄어든 것이다. 용수철 길이의 변화가 x 일 때의 복원력을 F 로 하자. 힘이 오른쪽 방향이면 F > 0 이고, 왼쪽 방향이면 F < 0 이라 한다. 이 때, 훅 법칙은 다음과 같이 나타낼 수 있다.
 
:<math> F = - kx </math>
익명 사용자