주 메뉴 열기

바뀜

1,132 바이트 추가됨 ,  11년 전
잔글
편집 요약 없음
'''정상파'''(定常波)는 진동의 마디점이나 배의 위치가 공간적으로 이동하지 않는 [[파동]]이다. 정재파(定在波)라고도 한다.
[[그림:Standing_wave.gif|frame|right|정지된 매질에서 정상파의 형태. 빨간 점이 [[마디(물리)|마디]]에 해당한다.]]
'''정상파'''(定常波)는 진동의 마디점이나마디(node)나 배의배(antinode)의 위치가 공간적으로 이동하지 않는 [[파동]]이다. 정재파(定在波)라고도 한다.
 
정상파는 수학적으로 다음과 같이 기술될 수 있다.
 
같은 [[진동수]]와 [[파장]], [[진폭]]을 갖는 두 파동이 서로 마주보며 진행할 때, 정상파를 만들게 된다. 예를 들어 줄의 양끝에서 생성된 두 개의 [[조화파]]가 다음과 같은 식으로 표현되는 경우,
 
:<math>\, y_{1} = y_{0}\sin(kx-\omega t)</math>
:<math>\, y_{2} = y_{0}\sin(kx+\omega t)</math>
 
여기서 <math>k= {2\pi \over \lambda}</math>이다. 그러면 두 파가 합성된 식은 다음과 같이 될 것이다.
 
:<math>\, y = y_{0}\sin(kx-\omega t) + y_{0} \sin(kx+ \omega t)</math>
 
[[삼각함수 항등식]]을 이용하면,
:<math>\, y = 2y_{0} \cos(\omega t)\sin(kx)</math>
 
<math>y_0</math>는 파의 진폭, ''ω''는 [[각진동수]]이다. 한편 x와 t는 파의 세로방향 위치와 시간이다.
 
파장의 함수가 사인 곡선이므로 x = 0, λ/2, λ, 3λ/2, … 인 위치에는 '''마디'''가 생기고, x = λ/4, 3λ/4, 5λ/4, … 인 위치엔 '''배'''가 생기게 된다. 물론, 각각의 마디, 또는 배 사이 간격은 λ/2이다.
 
{{토막글|물리학}}
[[분류:파동]]
 
[[bg:Стояща вълна]]