관성 좌표계: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
편집 요약 없음
아즈사봇 (토론 | 기여)
잔글 위키백과:봇 편집 요청/2014년 12월#2014-12-14 Osteologia의 요청에 따른 사이시옷 교정., replaced: 최소값 → 최솟값
1번째 줄:
{{정리 필요}}{{고전역학}}
'''관성좌표계'''(慣性座標系)는 [[고전 역학]]에서 [[뉴턴의 운동법칙]] 중 제1법칙이 성립하는 [[좌표계]]를 말한다. 즉, 관성 좌표계에서 아무런 힘도 작용하지 않는 물체는 정지해 있거나 등속 직선 운동을 한다. 따라서 일정한 속도를 갖는 모든 계(frame)가 관성 좌표계에 해당되며 모든 관성 좌표계에서 물리 법칙은 동일하게 적용할 수 있다. 만일 어떤 좌표계가 가속도를 가지고 있다면 그 좌표계 안의 물체는 아무런 힘이 작용하지 않을 때도 가속도를 갖게 되어 뉴턴의 1법칙에 어긋난다. 이러한 경우 물체에 가상의 힘인 관성력이 작용한 것으로 보고 뉴턴의 역학 법칙에 예외가 없도록 만든다. 그러나 이것은 자연을 기술하는 수많은 형식들 중 뉴턴 역학이 선택되었기 때문이지 절대적인 것은 아니다. 만약 가속도를 갖는 좌표계를 기본 좌표계로 선택하였다면 물리 법칙은 다른 형태로 발전했을 것이며 힘의 정의도 달라졌을 것이다. 즉, 관성 좌표계는 자연계를 뉴턴 역학으로 기술하기 위한 가장 기본적인 장치이다. 또, 모든 관성 좌표계는 속도에 상관없이 갈릴레이 변환에 대하여 불변이라 정의하는데 이는 뉴턴 역학에서 절대공간과 절대시간이 전제가 됨을 의미한다.
 
== 역사 ==
8번째 줄:
=== 아리스토텔레스(Aristotle, B.C 384~322) ===
아리스토텔레스는 자연스러운 위치를 결정함으로써 자연 운동을 정의하였다. 사물의 자연스러운 위치는 자연 운동을 일으키는 원인이 된다.<ref>Concepts of space in Greek thought , Keimpe Algra, 1994</ref> 즉, 자연스러운 위치에서 벗어난 것은 원래 위치로 돌아가기 위해 스스로 움직인다. 아리스토텔레스는 지상계를 4가지 원소인 물, 불, 흙, 공기로 이루어져 있으며 이들은 촉촉함(moist), 건조함(Dry), 차가움(cold), 뜨거움(hot)의 4가지 성질과 관련있다. 물과 흙은 무거우므로 지구 중심방향으로 이동하려 하고 불과 공기는 가벼우므로 주변부로 이동하려 한다.<ref>Aristotle’s Physics, Joe Sachs, 1995</ref>
[[파일:4원소와_성질4원소와 성질.png|섬네일|아리스토텔레스의 4원소설]]
천상계를 이루는 물질은 제 5의 원소인 에테르로서 완전성과 불변성의 상징인 원운동이 자연스러운 운동으로 간주되었다. 즉, 아리스토텔레스의 자연 운동은 지구 중심 방향이나 그 반대 방향을 가진 직선운동, 그리고 원운동이었으며 그것은 이루는 물질 고유의 성질에 기인한 것이었다. 예를 들어 돌을 자유 낙하 시켰을 때 지구 중심방향으로 떨어지는 것은 4원소 중 흙으로 이루어진 돌이 자연스럽게 본연의 위치로 돌아가는 과정이므로 자연 운동에 해당하는 것이다. 후에 갈릴레오(Galileo Galilei,1564~1642)가 그의 논문 및 저서에서 자연 운동을 정지 또는 등속 직선 운동으로 이해한 부분들이 있으나 이것은 원운동의 일부로서의 직선을 의미한 것으로 분석되므로 아리스토텔레스의 자연 운동 관점을 완전히 벗어났느냐 하는 점에서는 논란의 여지가 많다. <ref>A. Koyre: 'Galilee et la loi d'inertie', Etudes Galileennes</ref>
 
=== 데카르트 (Rene Descartes, 1596-1650)와 호이겐스(Christiaan Huygens, 1629-1695) ===
18번째 줄:
 
=== 아인슈타인(Albert Einstein, 1879~ 1955) ===
아인슈타인이 직접 자연 운동에 대하여 정의내리지는 않았으나 일반 상대성이론의 등가 원리에 따르면 공간은 거대한 질량체에 의해 휘게 되고 물체는 그 곡률을 따라 자연스럽게 움직이며 이것이 중력의 근원이다.[[파일:휜공간.png|섬네일|휘어진 시공간]]즉, 공간의 휘어짐에 따라 물체의 궤적이 질량체 쪽으로 끌려가는 것이 마치 질량체가 물체를 끌어당기는 것처럼 보이며 그것을 우리는 중력으로 정의했던 것이다. 뉴턴 역학에서 힘으로 정의했던 것이 더 이상 힘이 아닌 순간 자연 운동을 정지 또는 등속 직선 운동으로 이해해왔던 고전 역학적 믿음이 흔들린다. 중력장에서 자유 낙하하는 물체는 자연 운동을 한 것으로 보아야 하기 때문이다. 즉, 뉴턴 역학에서 정의했던 힘은 로 정의되며 관성 질량 을 의 가속도로 움직이게 하는 외부 요인을 의미했다. 그러나 아인슈타인은 중력 가속도가 아인슈타인의 자연 운동은 곡률이 있는 비 유클리드 공간에서 자유 입자가 측지선(geodesic)을 따라 움직이는 것이다.
 
== 관성 좌표계의 의미 ==
27번째 줄:
=== 공간과 시간 ===
==== 뉴턴의 절대 시공 ====
뉴턴의 그의 저서 프린키피아에서 (Mathematical Principles of Natural Philosophy) 처음에 질량과 운동량 및 힘에 대한 기본 정의를 하고 운동 법칙에 대하여 기술한다. 그 다음에 제시되는 ‘Schollium'에는 시간과 공간, 위치와 운동에 대한 언급이 나온다.
 
‘Absolute space, in its own nature, without relation to anything external, remains always similar and immovable. Relative space is some movable dimension or measure of the absolute spaces: which our senses determine by its position to bodies; and which is commonly taken for the immovable space’
 
(Newton 1952a, pp 8-98–9, 절대 시간에 대한 설명은 이것과 대칭적이다.)
 
또 뉴턴은 절대 시공에 대하여 우리가 너무나 잘 알고 있는 것이기 때문에 따로 설명하지 않으며 절대 시공은 영원불변의 존재라고 하였다. 그러나 우리는 뉴턴의 1법칙에 대하여 자문해볼 필요가 있다. ‘아무런 힘도 작용하지 않는 물체는 정지해 있거나 등속 직선 운동을 한다.’ 그렇다면 이것은 과연 무엇에 대한 정지 또는 등속직선 운동을 말하는 것인가? 뉴턴은 이것을 절대 공간으로 보았고 그 당시에는 하늘에 떠있는 항성을 기준으로 했다고 한다. 뉴턴에게 있어서 절대 공간의 존재는 뉴턴의 운동법칙이 적용될 수 있는 이상적인 조건을 제공한다는 의미에서 꼭 정의되어야 했고 매우 중요한 문제였다,<ref>Newton's absolute space, Mach's principle and the possible reality of fictitious forces ( Arden Zylbersztajn,1994 ,Eur. J. Phys. 15 1)</ref> ‘뉴턴의 양동이 실험(Newton's Bucket)'은 뉴턴이 절대 공간의 존재를 증명하기 위해 수행했던 사고실험으로 유명하다.[[파일:뉴턴의양동이.png|섬네일|양동이 사고실험]]
39번째 줄:
==== 상대론(Relativism) ====
상대주의 또는 상대론에 의하면 절대 시공은 존재하지 않으며 물질의 위치와 그것의 운동은 완전히 상대적으로만 파악할 수 있다.
 
===== 갈릴레이의 상대성( Galileian Relativity ) =====
52번째 줄:
 
===== 라이프니츠의 상대주의(Leibniz‘s Relativism) =====
뉴턴에 의하면 절대 시공은 신적인 것이었고 그에 비해 [[라이프니츠]](Gottfried Wilhelm Leibniz, 1646∼1716)는 인간에 의해 인식되지 못하기 때문에 절대 시공 개념은 아무 의미가 없다고 주장하였다. 라이프니츠의 주장을 뉴턴은 ‘양동이 사고실험’으로 반박하였으나 라이프니츠는 양동이의 ‘회전’이 관성좌표계에 대한 회전이지 절대 공간에 대한 회전이라고 말할 수는 없다는 이유로 중요시하지 않았다.<ref>Leibniz-Clarke Controversy: Absolute versus Relative Space and Time, Hermen Erichson,1966</ref>
 
[[클라크]]와의 서신교환에서 라이프니츠는 공간과 시간에 대한 두 가지의 적극적 이론을 제시한다. 첫째로 공간과 시간은 실체나 속성이 아니라 관계라는 것이다.‘공간은 공존의 질서이다.’,‘시간은 연쇄적 존재들의 질서이다.’이와 같이 라이프니츠는 공간과 시간은 물체와 사건들이 독립적으로 존재하는 실체로서의 공간과 시간이라는 뉴턴의 절대 시공 이론에 직접적으로 반대한다. 라이프니츠에게 물체란 공간에 선행하며 사건이란 시간에 선행하는 것이었다. 즉, 물체가 없이 공간은 존재할 수 없고, 사건이 없이 시간은 존재할 수 없다는 주장이다. 이러한 명제는 실체 홀로 충분히 사실적이고 완벽하며 그 외의 것은 단순한 정신적 구성물에 불과하다고 설명될 수 있다.<ref>The Renaissance and 17th Century Rationalism, G.H.R Parkinson,1999</ref>
 
클라크와의 서신교환에서 라이프니츠는 뉴턴의 절대 시공 개념에 대해 반박 이유를 제시하는데 그 중 중요한 것이 충족 이유율(Principle of Sufficient Reason)이다. 뉴턴의 절대 공간계는 우주가 없이는 존재할 수 없으며 수많은 모든 계는 동등하다. 이런 이유로 하나의 계와 그것을 제외한 모든 계의 합 역시 동등하다. 절대 공간계가 존재하기 위한 충분한 이유가 없으므로 뉴턴의 절대 공간은 존재할 수 없다고 라이프니츠는 주장한다. 그러나 이들의 논쟁은 물리학 보다는 형이상학에 가까웠다. 후에 뉴턴의 절대 시공 개념은 아인슈타인의 상대성 이론에 의해 완전히 폐기된다.
 
===== 마흐의 원리(Mach's Principle) =====
[[에른스트 마흐|마흐]](Ernst Mach, 1838~1916)는 보지 않은 것은 믿을 수 없다는 철저한 [[실증주의]]적 관점을 가졌고, 이에 따라 직접 관측할 수 없다는 이유로 [[원자]]의 개념도 강하게 부정해서 [[볼츠만]]과 대립할 정도였다. 마흐는 절대공간 역시 관측할 수 없다는 이유로 강하게 부정하였다. [[뉴턴]]이 절대공간의 존재를 주장하면서 제시했던 [[양동이 사고실험]]에 대하여 마흐는 물질 사이의 관계에서 기인하는 효과로 해석하는데 이것이 ‘마흐의 원리’이다. 마흐에 의하면 [[가속]]운동을 하는 물체가 경험하는 관성력은 전체 우주 우주의 다른 물체들의 양과 분포에 의해 결정된다. 마흐는 [[원심력]]은 물체의 절대 회전의 결과라는 뉴턴의 견해를 비판하면서, 멀리 떨어져 있는 우주의 거대한 질량에 대한 상대적 회전이 원심력이라고 주장했다. 이러한 마흐의 주장은 관성의 본질을 바꾸는 주장이었다.
 
[[뉴턴역학]]에서는 절대공간과 그것에 대해 일정한 속력으로 움직이는 계를 [[관성 좌표계]] 묶음으로 보았다. 이러한 무한개의 관성 좌표계들에 대하여 등속 직선 운동을 하는 물체는 전혀 힘이 작용하지 않는 물체로 전제하였다. 그러나 마흐는 멀리 떨어진 항성들의 집합을 하나의 변하지 않는 좌표계로 설정하였고 항성 좌표계의 입장에서 뉴턴의 등속 직선 운동은 정지 상태로 간주된다. 마찬가지로, 뉴턴 역학이 적용되는 국소적인 좌표계는 항성 좌표계 입장에서는 대략 회전하지 않는 좌표계로 간주된다. 이처럼 하나의 계를 제외한 나머지 우주를 항성 좌표계로 설정한 것은 관성을 운동학이 아닌 동역학으로 취급해야 함을 의미한다. 또, 질량체의 관성은 그것을 제외한 나머지 우주에 의해 결정되므로 상대적인 양이 된다. 마흐는 뉴턴의 [[양동이 실험]]에서 물의 수면 높이가 변한 것을 물을 둘러싼 우주와 물 사이의 상호작용 때문이며 물과 양동이를 제외한 우주에 아무것도 존재하지 않는다면 수면은 변하지 않을 것이라고 설명하였다. 절대공간 개념을 폐기하고 회전 운동과 병진 운동의 경계를 없앤 마흐의 논리는 후에 아인슈타인이 [[특수상대성이론]]과 [[일반상대성이론]]의 영감을 떠올리는 데 도움을 주었다고 한다.<ref>Inertial forces, absolute space, and Mach’'s principle: The genesis of relativity, 2006, Ronald Newburgh</ref>
 
=== 공간과 시간의 균질성(space-time homogeneous) ===
68번째 줄:
<math>\mathbf{L}(\mathbf{q}_1,\mathbf{q}_2,\mathbf{q}_3,...\mathbf{q}_s,\dot{\mathbf{q}_1},\dot{\mathbf{q}_2},\dot{\mathbf{q}_3},...\dot{\mathbf{q}_s},t)</math>
 
변분 원리를 적용하면 다음 적분식은 최소값을최솟값을 가져야 한다.
 
<math>\textstyle \int_{t_1}^{t_2}\mathbf{L}(\mathbf{q},\dot{\mathbf{q}},t)\, dx</math>
76번째 줄:
<math>\mathbf{L}=\mathbf{L}( \mathrm{v}^2)</math>
 
공간은 균일함을 전제하였으므로
 
<math> \partial\mathbf{L}/ \partial r =0</math>
90번째 줄:
 
# 모든 관성계에서 물리 법칙은 동일하다.
# 진공에서 빛의 속도는 일정하며 광원의 움직임과 무관하다.
 
이것은 결국 ‘광속의 일정함’을 모든 관성계에서 성립하도록 하기 위한 것이었으며 특수 상대성 이론은 맥스웰의 전자기학 때문에 깨어질 수 있었던 ‘갈릴레오의 불변 원리(Galileian Relativity 또는 Galileian Invariance)'를 갈릴레오 변환이 아닌 로렌츠 변환을 적용함으로써 살려낼 수 있었다. 그 필연적인 결과로 ‘시간과 공간은 별개의 것이 아니며 관찰자의 운동 상태에 따라 상대적이다’ 라는 결론으로 귀결된다. 이로써 물리법칙은 모든 관성계에서 같은 형태로 기술되며 절대 공간은 물리적으로 무의미한 것이 된다.<ref>상대성 이론과 시간 공간의 철학, 이철훈, 2001 물리학과 첨단기술</ref> 아인슈타인은 특수 상대성 이론은 1916년 일반 상대성 이론으로 발전하였다. 특수 상대성 이론이 서로 등속 직선 운동 하는 관성계라는 특수 상황을 바탕으로 했다면 일반 상대성 이론은 가속되는 좌표계까지 포함하는 이론이다. 일반 상대성 이론의 기본 원리는 ‘등가 원리 (Equivalence Principle)'로서 가속도의 효과와 힘은 구별할 수 없다는 것이다. [[파일:상대론과관성계.png|섬네일|상대론과 관성계의 의미]]가속되는 계에서 나타나는 가속도 효과는 뉴턴 역학에서 말하는 가상의 힘인 ‘관성력’이다. 그러나 ‘관성력’과 ‘중력’을 구분할 수 없으며 동등하다. 예를 들어 구심 가속도가 g 인 비관성계는 중력이 작용하는 관성계와 구분할 수 없다. 결국 어떤 계가 가속운동을 하느냐 등속 직선 운동을 하느냐와 관계없이 모든 좌표계는 동등하다. 가속되는 한 계의 관성력은 다른 계에서 다른 형태의 실제 힘으로 인식될 수 있기 때문이다. 뉴턴 역학의 적용을 위한 대전제였던 관성 좌표계는 특수 상대론에 의해 (뉴턴 역학과 전자기학을 포함하는)모든 물리 법칙이 동일하게 적용되는 좌표계로 확장되었고 절대 공간 개념은 폐기되었다. 또 일반 상대론은 가속도 효과와 중력을 통합하고 그것을 모든 자연 현상에 적용함으로써 관성계와 비관성계의 경계를 허물었다.