헤세 행렬: 두 판 사이의 차이

70 바이트 추가됨 ,  7년 전
잔글
편집 요약 없음
잔글편집 요약 없음
{{미적분학}}
수학에서[[미적분학]]에서, '''헤세행렬헤세 행렬'''(Hesse行列, {{llang|en|Hessian matrix}})은 어떤 함수의 [[이계도함수]]를 행렬로 표현한 것이다. 헤세행렬은헤세 행렬은 독일의 수학자 [[루트비히 오토 헤세]]의 이름을 따서 명명되었다. 헤세행렬은헤세 행렬은 다변수함수가 극값을 가질 때, 그것이 극대인지, 극소인지 판정할 때 사용한다.
 
수학에서 '''헤세행렬'''(Hessian matrix)은 어떤 함수의 [[이계도함수]]를 행렬로 표현한 것이다. 헤세행렬은 독일의 수학자 [[루트비히 오토 헤세]]의 이름을 따서 명명되었다. 헤세행렬은 다변수함수가 극값을 가질 때, 그것이 극대인지, 극소인지 판정할 때 사용한다.
 
== 정의 ==
실함수 <math>f(x_{1}, x_{2}, x_{3}, ..., x_{n})</math>이 주어졌을 때, 헤세행렬은'''헤세 행렬'''은 다음과 같이 주어진다.
:<math>H(f) = \begin{bmatrix}
\frac{\partial^{2} f}{\partial x_{1}^2} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \cdots & \frac{\partial^{2} f}{\partial x_{n}^2}
\end{bmatrix}</math>
헤세행렬은헤세 행렬은, 함수의 기울기 벡터 <math>\nabla f</math>에 대한 [[야코비 행렬]]로도 설명이 가능하다.
 
함수 <math>f</math>의 이계도함수가 [[연속함수|연속]]이라면 혼합 편미분은 같다. 그 때 이 행렬은 [[대칭행렬]]이다.
 
== 테일러 급수와 헤세 행렬 ==
== 테일러급수와 헤세행렬 ==
{{참고|테일러급수테일러 급수}}
함수 <math>f:U\sub\mathbb{R}^n\to\mathbb{R}</math>의 <math>n=2</math>인 [[테일러급수테일러 급수]]는 헤세행렬을헤세 행렬을 이용해서 나태낼 수 있다.
:<math>\mathbf{h}\in\mathbb{R}^n</math>에 대해 <math>f\left(\mathbf{x}_0+\mathbf{h}\right) =f\left(\mathbf{x}_0\right) +J\left(\mathbf{x}_0\right)\mathbf{h}+\mathbf{h}^TH\left( f\right)\left(\mathbf{x}_0\right)\left(\mathbf{h}\right)</math> (여기서 <math>\mathbf{h}^T</math>는 <math>\mathbf{h}</math>가 열벡터라고 할때 그 [[전치행렬]]인 행벡터를 의미한다.)
만약 <math>\mathbf{x}_0</math>가 [[임계점]]이라면 <math>\mathbf{D}f\left(\mathbf{x}_0\right) =0</math>이므로 <math>\mathbf{h}\in\mathbb{R}^n</math>에 대해 <math>f\left(\mathbf{x}_0+\mathbf{h}\right) =f\left(\mathbf{x}_0\right) +\mathbf{h}^TH\left( f\right)\left(\mathbf{x}_0\right)\left(\mathbf{h}\right)</math> 이다. 즉, 상수가 아닌 가장 첫 번째 항이 바로 헤세행렬이헤세 행렬이 되는 셈이다.
 
== 바깥 고리 ==
* {{MathWorld|id=Hessian|title=Hessian}}
 
== 함께같이 보기 ==
* [[야코비 행렬]]
* {{MathWorld|Hessian}}
{{토막글|수학}}
 
[[분류:미적분학]]