레이저: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
→‎어떻게 강한 에너지를 내는가: 가독성 개선을 위해 Incoherent 내용 추가
Namobot (토론 | 기여)
잔글 커녕 맞춤법 수정 using AWB
1번째 줄:
{{다른 뜻}}
{{정리 필요|날짜=2008-11-12}}
[[파일:Lasers.jpeg|thumb|300px|레이저 포인터(적색[635  nm], 녹색[520  nm], 청색[445  nm])]]
'''레이저'''({{lang|en|laser}}, {{문화어|레이자}})는 유도 방출<ref>여기 방출(勵起放出)이라고도 한다.</ref> 에 의한 빛의 증폭({{lang|en|Light Amplification by the Stimulated Emission of Radiation}})의 [[영어]]표기를 한글화한 것이다. 광자를 [[결맞음|결맞은]] 빛으로 방출하는 광원이다. 전형적인 레이저 광은 [[단색]], 즉, 오직 하나의 [[파장]]이나 [[색]]으로 이루어진다. 일반적으로 레이저 빔은 가늘고 퍼지지 않는다. 반면, [[백열전구]]와 같은 대부분의 [[광원]]은 결이 맞지 않은 수많은 빛을 넓은 파장 범위에서 넓은 면적으로 방출한다. 레이저의 파장은 매질 등의 구성요소에 의해 정확하게 정해진다. 매질에 따라, [[아르곤]]에서는 푸른색, [[이산화탄소]]에서는 무색([[적외선]]), [[루비]]에서는 붉은색의 레이저가 방출된다.
 
== 보통의 광선과 무엇이 다른가 ==
[[파일:Laser Towards Milky Ways Centre.jpg|thumb|400px|]]
햇빛을 한 점에 집중하면 종이를 태울 정도의 에너지를 얻을 수가 있다.
레이저의 경우 태양빛에 비하여 단위 면적당 얻어지는 에너지가 훨씬 많은데, 태양빛은 직경 1000분의 1㎜ 크기에 집광(集光)시키는 것이 어렵지만 레이저 광(光)이라면 그것이 가능하다.
28번째 줄:
 
== 레이저 산업 분야 ==
현재 레이저 산업의 시장규모는 수조 원에 이른다. 가장 널리 사용되는 분야는 [[콤팩트 디스크]], [[DVD]], [[블루레이 디스크]] 등의 [[광디스크]] 장치이다. 이외에도 [[바코드]] 리더와 레이저 포인터에도 주로 사용된다.
 
산업적으로 레이저는 철이나 금속을 자르거나 표면에 그림, 글씨를 새기는 데 사용된다. 레이저는 다양한 분야의 [[과학]]에서 사용되는데 특히 정확하게 정해지는 단색의 파장 때문에 [[분광학]] 분야에 주로 사용된다. 펄스 레이저의 경우 짧은 펄스 폭을 이용하여 짧은 시간 동안에 일어나는 현상을 관찰하는 데 사용된다. 군사적으로 레이저는 공격 대상을 식별하거나 미사일 등의 무기를 유도하는 데 사용되며 [[전술 고에너지 레이저]]와 같이 미사일이나 비행체 등을 요격하는 용도로도 사용된다. [[의학]]에서는 안과 수술, 미용 목적의 수술 등에 사용된다. [[관성항법장치]] 내에서 Ring Laser Gyro나 Fiber Optic Gyro의 형태로 이용되며 [[물리학]] 분야에서는 [[레이저 냉각]]으로 원자를 극저온으로 냉각시키는 용도로 사용한다. [[원자시계]], [[라이다]] [[측량]]에서도 활용된다.
34번째 줄:
== 어떻게 강한 에너지를 내는가 ==
[[파일:Laser.svg|thumb|right|275px|'''주요 구성 요소:'''<br />1. 활성 레이저 매질<br />2. 에너지<br />3. 거울<br />4. 부분적 거울<br />5. 레이저 광]]
빛을 증폭한다는 것은 간단히 말하면 빛의 힘을 강하게 만드는 것을 말한다. 그것은 어떤 물질을 구성하는 원자와 분자를 자극하여, 빛 등의 전자파를 에너지로서 꺼내는 것을 말한다. 물질에는 각각의 고유한 에너지 레벨이 있어, 증폭되었을 때에 방출되는 빛의 에너지도 각각 일정한 값을 갖는다. 방출되는 빛의 파장이 물질마다 달라지는 것은 그 때문이다. 분자와 원자는 통상 각각 일정한 에너지 레벨에서 안정되어 있는데, 이것을 기저 상태(基底狀態)라 한다. 그런데 밖으로부터 자극을 받으면 에너지 레벨이 높은 여기 상태가 된다. 이 때의 분자와 원자는 매우 불안정하기 때문에 에너지 레벨이 낮은 안정 상태로 돌아가려고 빛을 방출한다. 이 자연 방출로 얻어지는 빛은 무질서한 빛이 혼재하여 파장도 위상도 제각기 다르다. 이와 같은 빛을 '인코히런트(Incoherent)'한 빛이라 하는데, 이 빛은 일상 생활에서 체험하는 빛과 똑같은 것이다. 한편 원자와 분자는 자신이 자연 방출하는 빛과 똑같은 파장의 빛에 부딪치면 유도되듯이 빛을 방출하는 성질이 있다. 이 빛은 원래의 빛과 파장·위상·진행 방향도 완전히 똑같은 가간섭적(可干涉的)<ref>코히런트(coherent)</ref> 빛이다. 레이저 광을 꺼내는 데는 광공진기(光共振器)를 사용한다. 이것은 광축(光軸)이 일치하도록 좌우에 서로 마주보는 거울을 놓고, 그 사이에 레이저 발진(發振)을 시키기 위한 물질<ref>레이저 매질(媒質)</ref> 을 놓은 것이다. 매질로서는 결정(結晶)을 비롯한 고체 외에 액체, 기체도 사용되는데 현재까지 수천 종류에 이르는 레이저 광이 확인되고 있다. 이 광공진기의 레이저 매질에 자극을 주어 연속적으로 여기(勵起)를 만들어 내면, 자연 방출과 유도 방출이 일어난다. 자연 방출도 유도 방출도 처음에는 제각기 다른 방향을 향해서 일어나지만 좌우의 거울에 수직으로 닿는 빛만은 반사되어 거울 사이를 몇 번이고 왕복하는 동안에 유도 방출을 되풀이하여 레이저 광으로 성장해 간다. 이때 한쪽 거울에 부분 투과성의 것을 사용하면 내부를 왕복하고 있는 빛의 일부분이 광공진기 밖으로 방출된다. 이렇게 해서 레이저 광이 발생되는 것이다.
 
== 빛의 공작기계 ==
40번째 줄:
 
== 암 치료에서 지도 만들기까지 ==
의료 분야에서도 레이저는 눈부시게 활용되고 있다. 잘 알려져 있는 것이 레이저 메스로 이것은 레이저 광을 렌즈로 집광시켜 한 점에 조사(照射)하여, 강력한 에너지로 생체 조직을 순간적으로 증발, 기화(氣化)시켜서 절개하는 것이다. 절개되는 부분의 조직은 순간적으로 1500℃ 이상이 되어 열에 의하여 증발해 버린다. 출력을 100℃ 이하로 낮추면 조직은 응고되기 때문에, 종래의 메스보다도 출혈이 적어지므로 출혈이 많은 부위의 수술에 적합하다. 의료 분야에서는 레이저 메스로 대표되는 열 효과의 이용이 주였는데, 최근에는 다음 단계로 크게 진전되려 하고 있다. 이것은 광화학 반응을 이용하여 살세포 효과(殺細胞效果)를 얻으려는 것으로, 암 치료에 큰 기대가 모아지고 있다. 체내에 HpD<ref>헤마토프로필린 유도체</ref> 라는 색소를 주입하면 암세포만이 반응한다. 왜 암세포만이 반응하는지 그 얼개는 완전히 밝혀지지 않았으나 이 반응이 생겼을 때 이 색소에 흡수되기 쉬운 레이저를 조사(照射)하면 암세포의 발육을 저지하고, 살세포 효과가 있는 물질이 생성되어 암이 치료되는 것이다. 최근에는 레이저를 치아에 조사하는 것만으로 치통을 멎게 한다든지, 이의 치료를 무통(無痛)으로 하는 방법도 고안되었다. 또한 흥미로운 일은 어떤 레이저를 이에 조사하면 치수(齒髓)의 반응성에 2차적인 석회화(石灰化)가 생긴다는 것을 발견한 것인데, 이것은 장차 충치 치료 방법을 크게 바꿀 가능성이 있다. 레이저에 의한 무통 치료의 경우도 왜 환자가 통증을 느끼지 않는지는 아직 밝혀지지 않고 있다. 레이저라고 하면 이제까지는 열 효과면만이 강조되어 왔지만, 앞으로는 좀 더 다른 면에서의 응용이 적극적으로 연구, 개발되어 갈 것이다. 치료 목적 이외의 검사에도 레이저가 이용되기 시작하고 있는데 이 분야에서도 획기적인 응용이 기대되고 있다. '살인 광선'이기는 커녕이기는커녕 인류를 살리는 빛으로서 크게 기대되고 있는 것이다. 또 한 가지 주목되고 있는 분야로 레이저 계측(計測)이 있다. 과거에는 미리 알고 있는 두 점 사이를 맺는 선과 측정하고자 하는 지점과의 각도를 바탕으로 거리를 측정하여 지도를 만들었는데, 레이저 계측법은 측정하고자 하는 지점에 반사경을 놓고, 기점(基點)에서 레이저 광을 발사하여 되돌아오는 시간으로 거리를 구하려는 것이다. 이 방법은 정밀을 요하는 지도 작성에서 위력을 발휘하고 있다.
 
== 산업, 의료, 통신 분야를 일신 ==