전기 전도체: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
편집 요약 없음
편집 요약 없음
8번째 줄:
 
== 전선 크기 ==
전선은 그것의 단면도에 의해 측정된다. 많은 나라에서 제곱 밀리미터로 표현된다. 북아메리카에서 도체는 더 작은 것을 위한 [[와이어 게이지]] 그리고 더 큰 것을 위한 [[원주밀]]에원주밀에 의해 측정된다.
 
== 전도도==
17번째 줄:
로서 계산 될수 있다. 여기서 l은 미터로 측정되는 도체의 길이 이고 A는 제곱미터로 측정되는 도체의 단면적이다. σ는 1미터당 [[지멘스]]로 측정되는 전도성이고 ρ는 미터 옴으로 측정되는 물질의 전기 저항이다. 저항률과 전도도는 연속적으로 비례하므로 도선이 만들어진 물질로만 결정되고 선의 기하학적 구조로는 결정되지 않는다. 저항률과 전도도는 역수관계이다: (ρ=1/σ). 저항률은 전류와 반대되게 측정되는 물질의 성질이다. 이 수식은 도체 내의 전류밀도가 모두 일정하다고 가정하고 있기 때문에 항상 실제상황에 부합하지는 않는다. 그러나 이 공식은 도선같은 긴 전도체에서는 거의 근사치를 보여준다.
이 공식이 일치하지 않는 다른 상황은 교류전류가 흐를 때 인데, 표피효과가 도체 중심 주변부의 전류의 흐름을 방해하기 때문이다. 그래서 기하학적 단면과 효율적 단면이 달라져서, 저항이 기댓값 보다 높아진다. 이와 유사하게 두 개의 전도체가 교류를 가지고 가까이 있으면 근접효과로 저항값이 증가하게 된다. 상용되는 전력교류주파수 에서는 이 효과가 전력변전소의 [[부스바(busbar)]] 또는 수백 암페어 이상의 고전력 케이블 등과 같이 높은 전류를 운반하는 큰 도체들 사이에서 크게 나타난다.
 
== 도체의 전류용량 ==
도체의 전유용량 즉, 전류를 흐를 수 있게 해주는 양은 그것의 전기적 저항과 관련이 있다. 저항이 작은 도체는 많은 양의 전류를 흐를 수 있게 해준다. 결과적으로 저항은 도체를 만드는 물질과 도체의 크기에 의해 결정되는 것이다. 도체를 만드는 물질에서 도체의 단면적이 더 넓으면 단면적 좁은 도체보다 더 적은 저항을 갖게 된다.
나도체에서 [[극한의 한계온도]]는한계온도는 저항에 진 전력이 도체를 녹게 만드는 지점에 있다. 하지만 퓨즈를 제외한 대부분의 도체는 실제로 이러한 제한온도가 훨씬 아래에서 일어난다. 예를들어 가정의 전선은 약 60도 까지 작동되는 PVC 절연체로 절연처리가 되어있다. 그래서 이런 전선의 전류는 제한되어 있기 때문에 화재의 위험을 야기하면서 구리 도체를 60도까지 가열시키는 일은 절대 없다. 하진만 그 외에, 더 비싼 테플론 (프라이팬에 음식이 눌러 붙지 않게 칠하는 것) 또는 섬유 유리와 같은 절연체는 훨씬 더 높은 온도에서도 작동될 것이다.
 
== 등방성 ==
만약 전기장이 물질에 적용되고 그 결과 유도된 전류가 같은 방향으로 흐르게 되면 물질은 등방성의[[등방성]]의 전기 전도체(isotropy electrical conductor)로 불리어진다. 반면에, 전류가 적용된 전기장으로부터 다른 방향을 가진다면 그 물질은 이방성의[[이방성]]의 전기 전도체(anisotropic electrical conductor)라 한다.
 
== 도체의 특징 ==