맨해튼 거리: 두 판 사이의 차이

→‎정의: 색 잘못 기재
(→‎정의: 정의에 있는 공식 부분의 순서를 영문 원본에 따라 순서를 바꿈)
(→‎정의: 색 잘못 기재)
[[파일:Manhattan distance.svg|thumb|right|200px|맨해튼 거리와 유클리드 거리의 비교: 빨간색, 파란색, 노란색 선은 길이가 12로 같으며, 유클리드 거리와 맨해튼 거리 양쪽 모두 가지고 있다. 유클리드 기하학의 경우 초록색 선의 길이는 6×√2 ≈ 8.48로, 선들 가운데 유일하게 길이가 가장 짧으며, 맨해튼 거리의 경우 초록색파란색 선의 길이는 12로, 이보다 길이가 더 짧은 선은 없다.]]
'''맨해튼 거리'''(Manhattan distance, 혹은 '''택시 거리''', '''''L''<sub>1</sub> 거리''', '''시가지 거리''')는 [[19세기]]의 수학자 [[헤르만 민코프스키]]가 고안한 용어로, 보통 [[유클리드 기하학]]의 [[거리 공간]]을 좌표에 표시된 두 점 사이의 거리(절댓값)의 차이에 따른 새로운 거리 공간으로 대신하기도 한다.
 
익명 사용자