"확률론"의 두 판 사이의 차이

20 바이트 추가됨 ,  4년 전
잔글
봇: 영어 위키백과 참고하여 {{Authority control}} 추가
잔글 (봇 : 사건 (확률론)를 가리키는 링크를 확률공간를 가리키도록 변경)
잔글 (봇: 영어 위키백과 참고하여 {{Authority control}} 추가)
== 수학적 확률(선험적 확률) ==
'''수학적 확률(mathematical probability)'''은 각 사건이 발생하는 확률이 같다라는 것으로, 시행에 대해서 일어날 수 있는 모든 경우의 수가 N가지이고, 어떤 사건이 일어나는 경우의 수가 K가지 일 때, 어떤 사건이 일어나는 확률이 <math>\frac{K}{N}</math>인 것을 뜻하며, 선험적 확률 이라고도 한다.
예를 들어 주사위 하나를 던질 때 나올 수 있는 경우의 수는 총 1, 2, 3, 4, 5, 6으로 6가지이고 1이 나오는 경우의 수는 1가지이다. 따라서 수학적 확률에 따르면 주사위 눈 1이 나올 확률은<math>\frac{1}{6}</math>이다.
== 통계적 확률(경험적 확률) ==
세상을 살아가다 보면 수학적 확률처럼 각 사건이 같은 정도로 일어날 것이라고 할 수 없는 경우들이 있다. 예를 들어 주사위를 실제로 6번 던져보면 1, 2, 3, 4, 5, 6이 각각 한번씩 나오리라는 보장은 없다. 따라서 실제로 같은 시행을 여러 번 반복하여 얻을 수 있는 횟수를 통해 나오는 확률이 '''통계적 확률(empirical probability)'''이다.
== 큰수의 법칙 ==
'''큰수의 법칙(law of large number)'''은 통계적 확률과 수학적 확률 사이의 관계를 나타내는 정리이며, 대수의 법칙이라고도 한다. 큰수의 법칙은 "어떤 독립시행에서 사건 K가 일어날 횟수를 k라고 하고 시행 횟수를 n이라고 하면, 통계적 확률에 따른 확률 <math>\frac{k}{n}</math>는 n이 한없이 커질 때 <math>\frac{k}{n}</math>는 일정한 값 a에 가까워진다"가 된다. 따라서 위의 설명을 식으로 나타내 보면
 
{{수학 분야}}
{{Authority control}}
{{토막글|수학}}
 

편집

1,774,748