주 메뉴 열기

바뀜

잔글
2001:E60:1008:7B91:0:2B:5474:5701(토론)의 편집을 Ykhwong의 마지막 판으로 되돌림
 
== 양자역학에서 해밀토니언 ==
[[양자역학]]에서 해밀토니언은 [[계 (물리학)|계]]의 운동에너지와 포텐셜 에너지의 합으로 전체 [[에너지]]를 나타내는 [[관측가능량]]이다. 다른 관측가능량들과 마찬가지로, 계의 전체 에너지를 측정할 때, 해밀토니언의 [[스펙트럼]]은 관측 가능한 결과를 나타낸다. 다른 [[자체수반연산자]]와 마찬가지로, 해밀토니언의 스펙트럼 또한 스펙트럼의 측정을 통해 순수한 점, 완전히 연속이거나 특이점이 있는 경우 등을 분해할 수 있다. 순수한 점 스펙트럼은 계의 특정한 [[속박상태]]를 나타내는 [[고유벡터]]로 취급될 수도 있다. 완전히 연속인 스펙트럼의 경우는, 상태의 선택이 자유로움을 의미한다. 특이점이 있는 스펙트럼의 경우는, 물리학적으로 불가능한 결과를 포함하기도 한다. 예를 들어, 유한한 [[퍼텐셜 우물]]을 생각해보자. 이 때, 속박 상태의 경우는 음의 에너지, 연속적인 자유로운 상태는 양의 에너지를 가지게 된다.
김블루 유튜브 구독
 
== 같이 보기 ==