"순환군"의 두 판 사이의 차이

19 바이트 제거됨 ,  2년 전
→‎항등식: 오류 바로잡기
(→‎항등식: 오류 바로잡기)
(→‎항등식: 오류 바로잡기)
그렇다면, 다음과 같은 항등식이 성립한다.
:<math>\operatorname{ord}(gh)=\operatorname{ord}g\operatorname{ord}h</math>
 
{{증명 시작}}
다음 두 가지를 보이는 것으로 족하다.
* <math>\operatorname{ord}(gh)\mid\operatorname{ord}g\operatorname{ord}h</math>
** 증명: <math>(gh)^{\operatorname{ord}(gh)}=(g^{\operatorname{ord}g})^{\operatorname{ord}h}(h^{\operatorname{ord}h})^{\operatorname{ord}g}=1^{\operatorname{ord}h}1^{\operatorname{ord}g}=1</math>
* <math>\operatorname{ord}g\operatorname{ord}h\mid\operatorname{ord}(gh)</math>
** 증명: <math>1=(gh)^{\operatorname{ord}g\operatorname{ord}(gh)}=h^{\operatorname{ord}g\operatorname{ord}(gh)}</math>이므로, <math>\operatorname{ord}h\mid\operatorname{ord}g\operatorname{ord}(gh)</math>이므로, <math>\operatorname{ord}h\mid\operatorname{ord}(gh)</math>이다. 비슷하게, <math>\operatorname{ord}g\mid\operatorname{ord}h\operatorname{ord}(gh)</math>이다. 따라서, <math>\operatorname{ord}g\operatorname{ord}h\mid\operatorname{ord}g\operatorname{ord}(gh)</math>이다.
{{증명 시작}}{{증명 끝}}
반대로, 군의 원소 <math>x\in G</math>의 차수를 다음과 같은 꼴로 나타낼 수 있다고 하자.
:<math>\operatorname{ord}x=mn\qquad(\gcd\{m,n\}=1)</math>
익명 사용자