재료역학: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
6번째 줄:
 
==정의==
재료역학에서 재료의 강도는 파괴나 [[변형 (공학)#소성 변형|소성 변형]](plastic deformation) 없이 '''작용 하중'''(applied load)을 견딜 수 있는 능력이다. 재료역학에서는 재료에 작용하는 힘과 그 결과 나타나는 변형을 다룬다. 기계적인 부재에 적용된 하중은 물체 안에 응력이라 불리는 내력(internal force)을 발생시키며 응력은 단위체(unit basis) 상에서 표현된다. 재료에 작용하는 응력은 다양한 형태의 변형을 유발하며, 이는 결국 재료를 완전히 파괴시킨다. 재료의 변형은 단위체 상에서 표현될 경우 변형률(strain)이라 불린다. 하중은 축상(압력, 장력) 혹은 회전상(전단력)으로 가해질 수 있다. 기계적인 재료에서 생겨나는 응력과 변형은 그 부재의 작용 하중 용량을 측정하기 위해 반드시 계산해야 한다. 이를 위해서는 부재의 기하학적 특성, 제한조건, 작용 하중, 물질적 특성에 대해 완전히 파악하고 있어야 한다. 이렇게 완전히 피악하고 나면 부재의 어떤 부분이든 응력과 변형을 계산할 수 있다. 일단 부재의 응력과 변형을 파악하고 나면, 부재의 강도(작용 하중 용량), 변형([[강성]]의 품질), 안전성(원래의 배열을 유지하는 능력)을 계산할 수 있다. 그 다음 계산된 응력을 재료 항복(material yield), 극한강도 등의 부재의 강도의 척도와 비교할 수 있다. 계산된 부재의 휨은 부재의 용도에 기반한 휨 기준(deflection criteria)들과 비교할 수 있다. 계산된 부재의 좌굴 하중은 작용 하중과 비교할 수 있다. 계산된 부재의 강성과 질량 분포는 부재의 동적 반응을 계산하고 부재가 사용될 acoustic environment(음향적 환경??)과 비교하는 데 활용할 수 있다.
 
재료의 강도는 그 이상 부하를 가하면 하중을 제거하더라도 이전과 같은 형태로 완전히 돌아오지 못해 부재가 영구적으로 휘어질 정도로 변형되는 [[응력-변형도 선도]] 위의 어떤 점(항복 강도)을 의미한다. 극한강도는 부재의 응력이 도달할 수 있는 최대치를 나타낸다. 파괴강도는 부재가 파괴되는 최소 응력 수치를 나타낸다.