항공전자: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
잔글 봇: 문자열 변경 (화 되어 → 화되어)
TedBot (토론 | 기여)
잔글 봇: 문자열 변경 ( 의 → 의 )
55번째 줄:
 
==== 항로 비행에 있어서의 변화 ====
지금까지의 항공기는 한 무선 항법 시설로부터 다음의 시설로 날아 간다(예를 들면 VOR 기지국을 차례차례로 경유해 나간다)가 일반적이었다. 이 항법은 기지국간의 경로를 비행경로라고 부른다. 비행경로는 지상의 VOR 등 기지국을 따라 설정된 것이기 때문에 최단 경로는 아닌 것이 많지만 정확하게 비행하기 위해서는 이것에 따라서 비행 할 수밖에 없었다. GPS는 이 상황을 바꾸어 지상으로부터의 도움없이 공항에서 공항으로 직행하는 것이 가능해졌다. 이것에 의해 시간/연료를 크게 절약할 수 있을 가능성이 있다. 그러나 이러한 직행 비행 방식은 항공교통 관제(ATC) 상의 큰 문제를 일으키게 된다. ATC 의ATC의 기본적인 목적은 비행하고 있는 항공기의 충분한 수직/수평 간격(관제 간격)을 유지하는 것이다. 직행 비행을 실시하면 간격 유지가 곤란해진다. 자동차의 교통을 상상해 보면 좋다. 비행경로는 도로에 비유할 수 있다. 만약 도로라는 것이 존재하지 않고 각 운전자가 목적지를 겨냥해 운전한다면 대단한 혼란 상태에 빠져 버릴 것이다. 비유하면 구분도 선도 없는 거대한 주차장과 같은 것이다. ATC는 실제로 직행 비행의 허가를 주기도 하지만, 광범위하게 이용하도록 하지 않는다. [[미연방항공국]] (FAA)이나 NASA가 구상중에 있는 자유 비행(Free Flight)와 같은 계획에서는 관제 시스템을 컴퓨터화하는 것으로 공중 충돌의 위험성을 검출, 예측해서 관제 간격을 유지하기 위한 기동을 항공기에 제공해 결과적으로 직행 비행의 대폭적인 이용 촉진을 가능하게 할 수 있다고 하고 있다. 이것은 기존의 공중충돌방지장치(TCAS)를 닮아 있지만 보다 대규모적이고 예측 능력을 높인 것이다.
 
==== 착륙 진입에 있어서의 변화 ====