"라플라스 변환"의 두 판 사이의 차이

편집 요약 없음
잔글 (로봇이 더함: am:ላፕላስ ሽግግር)
{{출처 필요}}
'''라플라스 변환'''(Laplace transform)은 어떠한 함수 <math>f(t)</math>에서 다른 함수로의 변환으로, [[선형 동역학계]]와 같은 [[미분 방정식]]을 풀 때 유용하게 사용된다. [[피에르시몽 라플라스]]의 이름을 따 붙여졌다.
 
라플라스 변환을 이용하면, 어려운 식들을 쉽게 변환하여 풀 수 있으며, 문제들을 직접적으로 해결 할 수 있는 장점이 있다. 초기값 문제의 경우 일차적으로 일반해를 구하는 단계가 필요없게 되고, 비제차 미분방정식의 경우에는 대응하는 제차미분방정식을 먼저 풀 필요가 없다. 라플라스 변환은 주어진 식은 간단한 식으로 변환한 뒤, 변형된 식을 푼다. 그리고 그렇게 풀어진 해를 다시 원식으로 변환한다.
라플라스 변환은 주어진 식은 간단한 식으로 변환한 뒤, 변형된 식을 푼다. 그리고 그렇게 풀어진 해를 다시 원식으로 변환한다.
 
== 정의 ==
 
함수 <math>f(t)</math>의 라플라스 변환은 모든 [[실수]] t ≥ 0 에 대해, 다음과 같은 함수 <math>F(s)</math>로 정의된다.
 
익명 사용자