"쾨니그의 정리"의 두 판 사이의 차이

1 바이트 제거됨 ,  10년 전
잔글
== 집합론 ==
=== 변별 대표원계 ===
이 정리의 집합론적 공식화를 서술하기 전에 먼저 '''변별 대표원계'''(system of distinct representatives, 辨別代表元系)의 개념을 설명할 필요가 있다. 어떤 [[집합]] S가 있고, 그 [[부분집합]] <math>A_1, A_2, .., A_m</math> 이 이루는 집합집합족 T가 있다고 하자. 그러면 T에 대해 어떤 집합 s가 변별 대표원계라는 것은 다음과 같이 정의된다.<ref name="a"/>
 
* S의 서로 다른 원소 <math>a_1, a_2, .., a_r</math> 이 <math>a_i \in A_i (i = 1, 2, .., r)</math> 일 때, T의 원소를 [[정의역]]으로 하고 S를 [[공역]]으로 하며 <math>s(A_i) = a_i</math> 를 만족하는 [[함수]] s를 T에 대한 변별 대표원계라 한다.
 
집합 S에서 얻을 수 있는 집합집합족 T는 변별 대표원계를 가질 수도, 가지지 않을 수도 있다. 또 변별 대표원계를 갖는 경우 유일하지 않을 수도 있다. 여기서 T가 변별 대표원계를 가지는 필요충분조건이 바로 이하의 정리로 주어지는 것이다.
 
이 변별 대표원계의 개념에서 왜 이 정리가 결혼정리로 불리는지를 알 수 있다. r명의 남자(혹은 r명의 여자)가 결혼했으면 하는 여자(혹은 남자)의 표를 만들 때, 각 사람이 자기 표에 있는 이성과 결혼하는 것이 가능할 필요충분조건은 그 표가 변별 대표원계를 갖는 것이기 때문이다.<ref name="a"/>
이 꼴의 쾨니그의 정리는 다음과 같이 공식화할 수 있다.<ref name="a"/> 일반적으로 이는 '홀의 정리'로 불린다.
 
* 앞에서와 같이 정의된 집합 S, T에 대하여 T가 변별 대표원계를 가질 필요충분조건은 각각의 r≤m에 대해 r개 <math>A_i</math>의 [[합집합]]이 적어도 r개의 원소를 가지는 것이다.
 
여기서 →의 방향은 변별 대표원계의 정의에 따라 자명하므로, 홀의 정리에서 실제로 증명할 것은 ←의 방향이다.

편집

10,311