펩타이드

펩타이드 결합으로 연결된 아미노산의 짧은 사슬

펩타이드(영어: peptide)는 펩타이드 결합으로 연결된 아미노산들의 짧은 사슬이다.[1][2] 펩타이드라는 용어는 "소화되다(digested)"라는 의미의 고대 그리스어 "πεπτός (peptós)", "소화하다(to digest)"라는 의미의 고대 그리스어 "πέσσειν (péssein)"에서 유래하였다. 아미노산이 20개 미만인 사슬을 올리고펩타이드라고 하며, 올리고펩타이드는 다이펩타이드, 트라이펩타이드, 테트라펩타이드를 포함한다.

녹색으로 표시된 아미노 말단(L-발린)과 파란색으로 표시된 카복실 말단(L-알라닌)을 가지고 있는 테트라펩타이드 (예: Val-Gly-Ser-Ala)

폴리펩타이드(영어: polypeptide)는 보다 더 길고, 연속적이며, 가지가 없는 펩타이드 사슬이다.[3] 따라서 펩타이드는 핵산, 올리고당류, 다당류 및 기타 분자들과 함께 생물학적 중합체올리고머의 광범위한 화학적 부류에 속한다.

대략 50개 이상의 아미노산을 포함하는 폴리펩타이드를 단백질이라고 한다.[3][4][5] 단백질은 생물학적 방식으로 배열된 하나 이상의 폴리펩타이드로 구성되며, 보통 조효소보조 인자와 같은 리간드, 또는 다른 단백질 또는 DNARNA와 같은 다른 거대분자, 또는 복잡한 거대분자 집합체와 결합한다.[6]

펩타이드에 포함된 아미노산을 잔기라고 한다. 각각의 아마이드 결합이 형성될 때 물 분자가 방출된다.[7] 고리형 펩타이드를 제외한 모든 펩타이드는 펩타이드 양쪽 말단에 각각 N-말단(아미노기)과 C-말단(카복실기) 잔기를 갖는다.

종류편집

많은 종류의 펩타이드들이 알려져 있다. 펩타이드들은 공급원과 기능에 따라 분류되거나 범주화되었다. 《생물학적 활성 펩타이드의 핸드북》(The Handbook of Biologically Active Peptides)에 따르면 펩타이드의 일부 부류에는 식물 펩타이드, 세균/항균 펩타이드, 균류 펩타이드, 무척추동물 펩타이드, 양서류/피부 펩타이드, 독 펩타이드, 암/항암 펩타이드, 백신 펩타이드, 면역/염증 펩타이드, 뇌 펩타이드, 내분비 펩타이드, 섭취 펩타이드, 위장 펩타이드, 심혈관 펩타이드, 신장 펩타이드, 호흡 펩타이드, 아편 펩타이드, 신경영양 펩타이드 및 혈액-뇌 펩타이드 등이 있다.[8]

일부 리보솜 펩타이드는 단백질 분해의 대상이 된다. 이러한 기능은 일반적으로 고등 생물에서 호르몬 및 신호 분자로 기능하게 한다. 일부 미생물은 마이크로신박테리오신과 같은 항생제로 펩타이드를 생성한다.[9]

펩타이드는 종종 인산화, 하이드록실화, 설폰화, 팔미토일화, 글리코실화이황화물 형성과 같은 번역 후 변형을 겪는다. 일반적으로 펩타이드는 선형이지만 올가미 구조도 관찰되었다.[10] 오리너구리 독에서 L-아미노산을 D-아미노산으로 라세미화하는 것과 같은 보다 더 특이한 변형도 일어난다.[11]

비리보솜 펩타이드리보솜이 아니라 효소에 의해 만들어진다. 일반적인 비리보솜 펩타이드는 대부분의 호기성 생물에서 항산화 방어 성분인 글루타티온이다.[12] 다른 비리보솜 펩타이드는 단세포 생물, 식물, 균류에서 가장 일반적이며, 비리보솜 펩타이드 합성효소라고 하는 모듈식 효소 복합체에 의해 합성된다.[13]

이러한 복합체는 보통 유사한 방식으로 배치되며, 생성물에 대해 다양한 화학적 변형을 수행하기 위해 다양한 모듈을 포함할 수 있다.[14] 선형의 비리보솜 펩타이드도 일반적이지만 이러한 펩타이드는 보통 고리형이고 고도로 복잡한 고리 구조를 가질 수 있다. 이러한 시스템은 지방산폴리케타이드를 만드는 체계와 밀접하게 관련되어 있기 때문에 혼성체 화합물이 종종 발견된다. 옥사졸 또는 싸이아졸의 존재는 보통 화합물이 이러한 방식으로 합성되었음을 나타낸다.[15]

펩톤(영어: peptone)은 동물성 우유 또는 단백질 분해에 의해 소화된 고기에서 유래한다.[16] 작은 펩타이드를 포함하는 것 외에도 결과로 생성되는 물질에는 지방, 금속, , 비타민 및 기타 많은 생물학적 화합물이 포함된다. 펩톤은 생장하는 세균과 곰팡이를 위한 영양 배지에 사용된다.[17]

펩타이드 단편은 공급원 단백질을 식별하거나 정량화하는 데 사용되는 단백질 단편을 나타낸다.[18] 종종 이들은 통제된 샘플에 대해 실험실에서 수행된 효소 분해의 산물이지만 자연적인 영향에 의해 분해된 법의학 또는 고생물학 샘플일 수도 있다.[19][20]

화학 합성편집

 
Fmoc-α-아민-보호 아미노산을 이용한 링크(rink) 아마이드 수지에서의 고체상 펩타이드 합성

패밀리의 예시편집

이 부류의 펩타이드 패밀리는 일반적으로 호르몬 활성이 있는 리보솜 펩타이드이다. 이러한 모든 펩타이드는 세포에 의해 더 긴 "프로펩타이드(propeptide)" 또는 "전구단백질(proprotein)"로 합성되고 세포를 빠져 나가기 전에 절단된다. 이들은 신호전달 기능을 수행하는 혈류로 방출된다.

항균 펩타이드편집

타키키닌 펩타이드편집

혈관작동성 장 펩타이드편집

췌장 폴리펩타이드 관련 펩타이드편집

오피오이드 펩타이드편집

칼시토닌 펩타이드편집

자가 조립 펩타이드편집

기타 펩타이드편집

용어편집

길이에 따른 용어편집

펩타이드와 관련된 여러 용어는 길이에 대한 엄격한 정의가 없으며, 그 사용에서 중복되는 경우가 많다.

  • 폴리펩타이드는 많은 아미노산들(임의의 길이)이 아마이드 결합에 의해 결합된 단일 선형 사슬이다.
  • 단백질은 하나 이상의 폴리펩타이드(약 50개 이상의 아미노산들로 구성)로 구성된다.
  • 올리고펩타이드는 단지 몇 개의 아미노산(2개에서 20개 사이)들로 구성된다.
 
녹색으로 표시된 아미노 말단(L-발린)과 파란색으로 표시된 카복실 말단(L-알라닌)을 가지고 있는 트라이펩타이드 (예: Val-Gly-Ala)

아미노산의 수에 따른 용어편집

정의된 길이의 펩타이드는 IUPAC 숫자 접두사를 사용하여 명명한다.

  • 모노펩타이드는 1개의 아미노산을 가지고 있다.
  • 다이펩타이드는 2개의 아미노산을 가지고 있다.
  • 트라이펩타이드는 3개의 아미노산을 가지고 있다.
  • 테트라펩타이드는 4개의 아미노산을 가지고 있다.
  • 펜타펩타이드는 5개의 아미노산을 가지고 있다.
  • 헥사펩타이드는 6개의 아미노산을 가지고 있다.
  • 헵타펩타이드는 7개의 아미노산을 가지고 있다.
  • 옥타펩타이드는 8개의 아미노산을 가지고 있다 (예: 안지오텐신 II).
  • 노나펩타이드는 9개의 아미노산을 가지고 있다 (예: 옥시토신).
  • 데카펩타이드는 10개의 아미노산을 가지고 있다 (예: 생식샘자극호르몬 방출호르몬안지오텐신 I).

기능에 따른 용어편집

같이 보기편집

각주편집

  1. Hamley, I W (September 2020). 《introduction to Peptide Science》. Wiley. ISBN 9781119698173. 
  2. Nelson, David L.; Cox, Michael M. (2005). Principles of Biochemistry (4th ed.). New York: W. H. Freeman. ISBN 0-7167-4339-6.
  3. Saladin, K (2011년 1월 13일). 《Anatomy & physiology: the unity of form and function》 6판. McGraw-Hill. 67쪽. ISBN 9780073378251. 
  4. 국제순수·응용화학연합 Compendium of Chemical Terminology (the "Gold Book") 인터넷판: "proteins".
  5. “What are peptides”. Zealand Pharma A/S. 2019년 4월 29일에 원본 문서에서 보존된 문서. 
  6. Ardejani, Maziar S.; Orner, Brendan P. (2013년 5월 3일). “Obey the Peptide Assembly Rules”. 《Science》 340 (6132): 561–562. Bibcode:2013Sci...340..561A. doi:10.1126/science.1237708. ISSN 0036-8075. PMID 23641105. 
  7. 국제순수·응용화학연합 Compendium of Chemical Terminology (the "Gold Book") 인터넷판: "amino-acid residue in a polypeptide".
  8. Abba J. Kastin, 편집. (2013). 《Handbook of Biologically Active Peptides》 2판. ISBN 978-0-12-385095-9. 
  9. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (August 2007). “Microcins, gene-encoded antibacterial peptides from enterobacteria”. 《Natural Product Reports》 24 (4): 708–34. doi:10.1039/b516237h. PMID 17653356. 
  10. Pons M, Feliz M, Antònia Molins M, Giralt E (May 1991). “Conformational analysis of bacitracin A, a naturally occurring lariat”. 《Biopolymers》 31 (6): 605–12. doi:10.1002/bip.360310604. PMID 1932561. 
  11. Torres AM, Menz I, Alewood PF, 외. (July 2002). “D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus”. 《FEBS Letters》 524 (1–3): 172–6. doi:10.1016/S0014-5793(02)03050-8. PMID 12135762. 
  12. Meister A, Anderson ME; Anderson (1983). “Glutathione”. 《Annual Review of Biochemistry》 52 (1): 711–60. doi:10.1146/annurev.bi.52.070183.003431. PMID 6137189. 
  13. Hahn M, Stachelhaus T; Stachelhaus (November 2004). “Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains”. 《Proceedings of the National Academy of Sciences of the United States of America》 101 (44): 15585–90. Bibcode:2004PNAS..10115585H. doi:10.1073/pnas.0404932101. PMC 524835. PMID 15498872. 
  14. Finking R, Marahiel MA; Marahiel (2004). “Biosynthesis of nonribosomal peptides1”. 《Annual Review of Microbiology》 58 (1): 453–88. doi:10.1146/annurev.micro.58.030603.123615. PMID 15487945. 
  15. Du L, Shen B; Shen (March 2001). “Biosynthesis of hybrid peptide-polyketide natural products”. 《Current Opinion in Drug Discovery & Development》 4 (2): 215–28. PMID 11378961. 
  16. “UsvPeptides- USVPeptides is a leading pharmaceutical company in India”. 《USVPeptides》. 
  17. Payne, J. W.; Rose, Anthony H.; Tempest, D. W. (1974년 9월 27일). 〈Peptides and micro-organisms〉. 《Advances in Microbial Physiology, Volume 13》. Advances in Microbial Physiology 13. Oxford, England: Elsevier Science. 55–160쪽. doi:10.1016/S0065-2911(08)60038-7. ISBN 9780080579719. OCLC 1049559483. PMID 775944. 
  18. Hummel J, Niemann M, Wienkoop S, Schulze W, Steinhauser D, Selbig J, Walther D, Weckwerth W (2007). “ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites”. 《BMC Bioinformatics》 8 (1): 216. doi:10.1186/1471-2105-8-216. PMC 1920535. PMID 17587460. 
  19. Webster J, Oxley D; Oxley (2005). 《Peptide mass fingerprinting: protein identification using MALDI-TOF mass spectrometry》. Methods in Molecular Biology 310. 227–40쪽. doi:10.1007/978-1-59259-948-6_16. ISBN 978-1-58829-399-2. PMID 16350956. 
  20. Marquet P, Lachâtre G; Lachâtre (October 1999). “Liquid chromatography-mass spectrometry: potential in forensic and clinical toxicology”. 《Journal of Chromatography B》 733 (1–2): 93–118. doi:10.1016/S0378-4347(99)00147-4. PMID 10572976. 
  21. Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud (2017년 11월 17일). “Self-assembling peptide semiconductors”. 《Science》 358 (6365): eaam9756. doi:10.1126/science.aam9756. PMC 5712217. PMID 29146781. 
  22. Tao, Kai; Levin, Aviad; Adler-Abramovich, Lihi; Gazit, Ehud (2016년 4월 26일). “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials”. 《Chem. Soc. Rev.》 45 (14): 3935–3953. doi:10.1039/C5CS00889A. PMID 27115033. 
  23. Tao, Kai; Wang, Jiqian; Zhou, Peng; Wang, Chengdong; Xu, Hai; Zhao, Xiubo; Lu, Jian R. (2011년 2월 10일). “Self-Assembly of Short Aβ(16−22) Peptides: Effect of Terminal Capping and the Role of Electrostatic Interaction”. 《Langmuir》 27 (6): 2723–2730. doi:10.1021/la1034273. PMID 21309606. 
  24. Ian Hamley (2011). “Self-Assembly of Amphiphilic Peptides” (PDF). 《Soft Matter》 7 (9): 4122–4138. Bibcode:2011SMat....7.4122H. doi:10.1039/C0SM01218A. 
  25. Kai Tao, Guy Jacoby, Luba Burlaka, Roy Beck, Ehud Gazit (2016년 7월 26일). “Design of Controllable Bio-Inspired Chiroptic Self-Assemblies”. 《Biomacromolecules》 17 (9): 2937–2945. doi:10.1021/acs.biomac.6b00752. PMID 27461453. 
  26. Kai Tao, Aviad Levin, Guy Jacoby, Roy Beck, Ehud Gazit (2016년 8월 23일). “Entropic Phase Transitions with Stable Twisted Intermediates of Bio‐Inspired Self‐Assembly”. 《Chem. Eur. J.》 22 (43): 15237–15241. doi:10.1002/chem.201603882. PMID 27550381. 
  27. Donghui Jia, Kai Tao, Jiqian Wang, Chengdong Wang, Xiubo Zhao, Mohammed Yaseen, Hai Xu, Guohe Que, John R. P. Webster, Jian R. Lu (2011년 6월 16일). “Dynamic Adsorption and Structure of Interfacial Bilayers Adsorbed from Lipopeptide Surfactants at the Hydrophilic Silicon/Water Interface: Effect of the Headgroup Length”. 《Langmuir》 27 (14): 8798–8809. doi:10.1021/la105129m. PMID 21675796. 
  28. Heitz, Marc; Javor, Sacha; Darbre, Tamis; Reymond, Jean-Louis (2019년 8월 21일). “Stereoselective pH Responsive Peptide Dendrimers for siRNA Transfection”. 《Bioconjugate Chemistry》 (영어) 30 (8): 2165–2182. doi:10.1021/acs.bioconjchem.9b00403. ISSN 1043-1802. PMID 31398014. 
  29. Boelsma E, Kloek J; Kloek (March 2009). “Lactotripeptides and antihypertensive effects: a critical review”. 《The British Journal of Nutrition》 101 (6): 776–86. doi:10.1017/S0007114508137722. PMID 19061526. 
  30. Xu JY, Qin LQ, Wang PY, Li W, Chang C (October 2008). “Effect of milk tripeptides on blood pressure: a meta-analysis of randomized controlled trials”. 《Nutrition》 24 (10): 933–40. doi:10.1016/j.nut.2008.04.004. PMID 18562172. 
  31. Pripp AH (2008). “Effect of peptides derived from food proteins on blood pressure: a meta-analysis of randomized controlled trials”. 《Food & Nutrition Research》 52: 10.3402/fnr.v52i0.1641. doi:10.3402/fnr.v52i0.1641. PMC 2596738. PMID 19109662. 
  32. Engberink MF, Schouten EG, Kok FJ, van Mierlo LA, Brouwer IA, Geleijnse JM (February 2008). “Lactotripeptides show no effect on human blood pressure: results from a double-blind randomized controlled trial”. 《Hypertension》 51 (2): 399–405. doi:10.1161/HYPERTENSIONAHA.107.098988. PMID 18086944. 
  33. Wu, Hongzhong; Ren, Chunyan; Yang, Fang; Qin, Yufeng; Zhang, Yuanxing; Liu, Jianwen (April 2016). “Extraction and identification of collagen-derived peptides with hematopoietic activity from Colla Corii Asini”. 《Journal of Ethnopharmacology》 182: 129–136. doi:10.1016/j.jep.2016.02.019. PMID 26911525.