"파라콤팩트 공간"의 두 판 사이의 차이

편집 요약 없음
잔글
'''파라컴팩트파라콤팩트 공간'''(paracompact空間, {{llang|en|paracompact space}})은 [[위상공간 (수학)|위상공간]]으로서, [[컴팩트 공간]]을 새로운 방식으로 정의하여 만든 공간이다. [[미분위상수학]] 및 [[미분기하학]] 등의 분야에 아주 유용하게 사용된다. 이들 분야에서 다루는 많은 공간들이 파라컴팩트 공간이며, 이 공간은 [[단위 분할]](partition of unity) 성질을 가져서 국소적인 성질을 통해 전체적인 성질을 정의할 수 있기 때문에 [[리만 계량]], [[미분 형식]]의 [[적분]] 등 여러 주제에서 유용하기 때문이다.<ref name="조용승">조용승,{{책 인용|저자=조용승|제목=위상수학》, |출판사=경문사, |날짜=2010|언어고리=ko}}</ref>{{rp|68}} [[1944년]] [[부르바키]]의 [[프랑스]] 수학자 [[장 디외도네]]가 처음으로 제시하였다.<ref>{{저널 인용|성=Dieudonné|이름=Jean|날짜=1944|제목=Une généralisation des espaces compacts|저널=Journal de mathématiques pures et appliquées (neuvième série)|권=23|쪽=65–76|issn=0021-7824|mr=0013297|언어고리=fr}}</ref>
 
== 정의 ==
* 파라콤팩트인 [[희박 컴팩트 공간]]은 콤팩트 공간이다.
* 준파라콤팩트인 [[정칙공간]]은 파라콤팩트 공간이다.
* ('''디외도네의 정리''') 파라콤팩트 [[하우스도르프 공간]]은 <math>T_4</math>공간이다.<ref name="Munkres">{{책 인용|이름=James R. |성=Munkres|날짜= (2000), ''|제목=Topology'', |출판사=Prentice Hall.|언어고리=en}}</ref>{{rp|253}}
* 파라콤팩트 공간의 [[닫힌 집합|닫힌]] [[부분공간]]은 파라콤팩트 공간이다.<ref name="Munkres"/>{{rp|254}}
* ('''모리타의 정리''') <math>T_4</math> [[린델뢰프 공간]]은 파라콤팩트 공간이다.<ref name="Munkres"/>{{rp|257}}
한편, 일반적으로 파라콤팩트 공간의 임의의 부분공간은 파라콤팩트 공간이 되지 않으므로 파라콤팩트성은 [[유전적 성질]]이 아니다. 또한, [[컴팩트 공간]]들을 모으면 [[티호노프 정리]]에 의해 그 곱공간 역시 [[콤팩트 공간]]이 되는 것과는 다르게, 파라콤팩트 공간의 임의의 [[곱공간]]은 파라콤팩트 공간이 되지 않는다.<ref name="Munkres"/>{{rp|253}}
 
== 주석참고 문헌 ==
{{reflist}}
 
== 참고 문헌 ==
* James R. Munkres (2000), ''Topology'', Prentice Hall
* 조용승, 《위상수학》, 경문사, 2010
 
[[분류:일반위상수학]]