측정: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
편집 요약 없음
TedBot (토론 | 기여)
잔글 봇: 문단 이름 변경 (주석 → 각주)
13번째 줄:
 
== 오차와 정밀도 ==
초등학교 2학년의 어린이는 자에 관한 학습하는데, 이 중에는 어린이가 가지고 있는 30㎝자를 사용하여 종이 테이프로 줄자를 만들어서, 그것으로 교실의 너비를 재는 연습이 들어 있다. 그런데 2학년 어린이는 신축성이 있는 종이 테이프에 연필로써 정밀하지 못한 선을 긋고 숫자를 써 넣어서 줄자를 만드는 것이 보통이다. 그런 줄자를 이번에는 제나름대로 당기면서 10m 정도나 되는 교실의 너비를 재는 것이므로, 5㎝쯤의 착오, 즉 오차는 이내 생기게 마련이다. 오차라는 것은, 물건의 양을 측정했을 때의 측정치와 진정한 치와의 차를 가리키는 말이다. 30㎝자로써 연필의 길이를 잴 경우라면 오차가 훨씬 적게 생기지만, 그래도 눈금을 대는 방법이나 눈금 읽기를 조심하지 않으면 2∼3㎜의 오차는 이내 생긴다. 한편 비록 전문가가 정확한 자로써 측정한다고 해도 30㎜에 0.2㎜ 정도의 오차가 생기는 것은 거의 어쩔 수 없는 일이다. 이것은 자의 눈금에 0.2㎜ 정도의 폭이 있고, 연필의 양끝에도 0.2㎜쯤의 톱니 상태가 있어서 자를 대고 그 길이를 눈금으로 읽는다고 하는 공간적인 대응 조작에서는 정밀성 자체에 한계가 있기 때문이다. 그렇다면 눈금을 아주 세밀하게 넣은 정확한 자로서 블록게이지(block gauge)와 같이 그 자체의 치수가 일정한 것을 잴 때에는 어떠할까. 이 경우에도 역시 한도가 있어서 0.1㎜ 이하의 세밀한 판별은 할 수 없는 것이다. 그 까닭은 인간의 [[눈 (해부학)|눈]]이 지니는 구조상의 한계 때문이다.
 
측정이 잘되고 잘못된 정도, 즉 [[정확도와 정밀도|정밀도]]에는 여러 층의 단계가 있다. 정밀도, 즉 정확한 정도를 나타내는 정확성과 세밀한 정도를 나타내는 정밀성을 향상시키는 것도, 측정에 관한 연구의 주된 목표의 하나인 것이다. 기계에 의한 측정에서는 인간의 감각에 의한 측정에서보다도 오차를 훨씬 작게 할 수가 있다. 공간적인 대응의 세밀성을 늘이기 위해서는 현미경·확대투영기 등 광선을 이용하는 수단이 여러 가지 고안되어 있다. 좀더 넓은 의미에서 근소한 거리차를 조사하기 위해서는 나사 따위를 이용한 기계적인 것, 전기 용량의 변화를 이용한 전기적인 것, 공기마이크로미터와 같은 유체적(流體的)인 것 등 여러 방법이 쓰이고 있다. 그리고 광학적 방법으로는 광전현미경이나 광파간섭계도 쓰인다. 이와 같은 때에서도 알 수 있듯이 어떤 양의 변화로 변환하는 조작은 측정의 수단에서 중요한 의미를 지니는 것이다. 얼른 보기에는 간단한 것같이 여겨지는 측정이라도 그 중에서 몇 단계의 변환이 연속적으로 작용됨으로써 물건의 양이 수치로 나타나는 것이 보통이다.
20번째 줄:
=== 정도와 오차 ===
[[파일:Measuring cylinder hg.jpg|thumb|눈금이 표시 된 액량계]]
가령 둥근 직경 40.00㎜를 목표로 하여 원통이 되게끔 가공했다고 하자. 그런데 가공 후에 원통의 중앙에서 직경을 재었더니 40.05㎜였다면 목표 수치 40.00㎜와는 0.05㎜ 차이가 난다. 실제 측정한 값, 즉 측정치와 목표치와의 차를 '오차'라 한다. 이 오차에는 측정의 오차와 가공의 오차가 포함되어 있다. 가령 눈금이 0.01㎜마다에 매겨진 정확한 측정기가 있다면, 눈금과 눈금 사이는 목측(目測)으로 절반 이상을 절상하고 절반 이하는 잘라 버리며 읽으니 40.05㎜로 읽은 수치는 사실 40.04500…㎜보다 크고 40.0549…㎜보다 작다고 하는 것을 보여 주고 있을 뿐으로서, 0.01㎜ 폭의 애매성을 포함하고 있는 것이다. 실제 값(참된 값이라고 한다)은 완전한 측정기가 없는 한 알 수가 없지만 측정의 오차는 절상, 또는 잘라 버린 반 눈금인 0.005㎜보다 작은 것은 확실하다. 그뿐 아니라 측정기의 눈금은 인간이 가공해서 만든 것이므로 여기에 가공의 오차가 가산된다. 그 오차는 일반적으로 한 눈금의 절반 이하인데, 이것을 가미하면 측정오차는 0.01㎜를 넘지 않는 정도가 되며 참값은 40.040㎜에서 40.0599…㎜ 사이에 존재하게 된다. 참값은 분명치 않지만 가령 40.046㎜였다고 가정하면 목표치로부터의 편차 0.046㎜는 가공의 오차라고 할 수 있다.
 
오차와 대응해서 정도(精度)라는 용어도 쓰인다. 오차가 작은 것을 일컬을 때는 정도가 높다고 한다. 정도에도 측정의 정도와 가공의 정도가 있다. 같은 측정을 몇 번이고 되풀이하여 그 값에 기복이 적으면 정밀하다고 하며, 이들 측정치의 평균치가 목표인 값과의 편차가 작으면 정확하다고 한다. 정도의 내용에는 이처럼 정밀성과 정확성 등 양쪽을 포함하고 있어 한마디로 정도가 높다고 하는 표현이라도 어느쪽 의미인지를 확인하는 것이 중요하다. 1개의 철봉을 같은 장소에서 직경을 5회 측정하여 그 결과를 평균하면, 단 1회 측정했을 때보다 확실한 측정치를 얻게 된다. 다음에 같은 조건에서 가공한 10개의 철봉에서, 똑같은 측정을 되풀이하면 평균치를 10개 얻게 된다. 10개 중의 최대치와 최소치의 차는 가공의 기복이며, 가공의 정밀성을 보여 주는 것이 된다. 10개의 평균치를 다시 평균한 총평균치가 목표치에서 어느 정도의 편차를 보이는가는 가공의 정확성을 나타내는 척도가 된다. 다음에 어느 것이든 1개의 철봉을 선정, 중앙의 단면을 여러 방향으로 직경을 재어보면 단면의 형상이 정원이 아님을 알 수 있다. 이와 같은 진원의 정도를 진원도라 한다. 이번에는 철봉을 중심선을 지나는 세로로 잘랐을 때 절단면의 직경을 길이를 따라 측정해 보면 완전한 원통형이 아니고 다소 호리병박 형태, 쐐기형 등임을 알 수 있다. 이 같은 원통의 정도를 원통도라 부른다. 이와 같은 형상의 정도 외에 직각의 정도, 평행의 정도를 나타내는 직각도·평행도, 2개 이상의 원통 중심선의 일치의 정도를 나타내는 동심도 등이 있다. 또한 공작물의 표면을 국부적으로 자세히 조사해 보면, 매끈한 것이라든가 요철이 심한 것이라든가 여러 모양의 것이 있다. 이러한 표면 상태를 나타내는 것으로서 표면거칠기가 있으며, 이것은 요철의 높이에 따라 나뉜다. 가령 요철의 높이가 0.003㎜ 이하이면 3-S, 0.006㎜ 이하라면 6-S로 표시한다.
 
=== 오차가 가져오는 문제 ===
[[목수]]가 집을 짓는다든지, 문을 짜서 달 때 자세히 관찰하면 하나하나 상대와 맞춤으로써 틈새가 생기지 않도록 짜맞추고 있는 것을 알 수 있다. 우측과 좌측의 문을 서로 바꾼다든지 해 보면 틈새가 생겨서 꼭 맞지 않는 수가 많다. 상대와 맞춰서 짜맞추는 방식은 기계를 조립하는 경우에도 많이 보게 된다. 그러나 이 방법에서는 익숙한 사람이 솜씨 좋게 짜맞춘 기계는 성능이 좋으나, 서툴게 조립한 것은 성능이 좋지 못하기도 하고 곧 고장을 일으킴으로써 기계의 구조상 결함이 생기고 기계의 정밀도가 떨어진다. 또 사람의 손이 많이 가므로 완성까지에는 시간도 오래 걸릴 뿐 아니라 뒷날 부분품을 교환할 경우에도 기성품을 그대로 쓸 수 없는 불편이 있다. 그 때문에 기계를 만드는 데는 될수록 부분품을 미리 정밀도 높게 만들어, 그대로 조립하는 것만으로 완성할 수 있도록 하는 것이 좋을 것이다. 즉 부분품을 정해진 오차 범위 내로 머물도록 만드는 것이다.
 
일상생활에 흔히 쓰이는 물품 중 전구·필름·나사 등은 같은 종류의 것이라면 국내의 어디에서든 그대로 쓸 수 있다. 낡은 전구와 새 전구 사이에서는 정확히는 동일 치수가 아니지만 어떤 정해진 치수 범위 안에 들도록 만들어져 있기 때문이다. 이처럼 서로 바꿀 수 있는 성질을 호환성이라고 하며 공업의 발달에는 매우 중요한 사항이다. 서로 맞춰지는 암과 수의 부분품, 가령 암나사와 수나사 등에는 각각에 허용되는 오차가 국가규격(KS)으로 정해져 있다. 이 규격은 감합규격이라고 불린다. 가령 직경 40㎜의 구멍에 H7이라는 기호로 표시되는 감합 치수를 지시하면, 이것은 40.000㎜에서 40.025㎜까지의 범위로 구멍을 뚫으면 된다는 것을 의미하며, 이것과 짜맞추는 축에 G6이라는 지시를 하면 축은 39.975㎜에서 39.991㎜까지 사이로 만들면 된다. 구멍과 축을 짜맞추면 최소 0.009㎜, 최대0.050㎜의 틈새가 생겨서 빡빡하지도 않고 헐겁지도 않을 한쌍의 축과 축받이가 만들어지는 것이다. 보통의 [[톱니바퀴]]의 치면은 인벌류트라고 하는 곡선으로 마무리되는 것이 정상인데 잘못 제작하면 이 곡선이 제대로 잡히지 못할 수도 있으며 치면이 거칠고 요철이 생기거나 한다. 이처럼 오차가 큰 톱니바퀴를 서로 맞물리면 격심한 진동이나 소음이 생기게 된다. 이런 경우 역시 오차가 문제가 되는 경우이다.
 
=== 오차가 생기는 원인 ===
측정의 오차이든 가공의 오차이든, 도저히 피할 수 없는 오차와 조심하면 피할 수 있는 오차가 있다. 우선 주의하면 피할 수 있는 것으로서는, 작업자의 과실로부터 오는 오차, 그리고 측정기·[[공작기계]]·공구의 적절하지 못한 사용에서 파생되는 오차 등이 있다. 측정기의 적절하지 못한 사용이란 필요 이상으로 큰 힘을 가한다든지 온도차가 큰 상태에서 측정한다든지 하는 경우로 측정물이 변형되어 오차가 생긴다. 가공의 잘못인 경우에는 적절한 절삭 조건을 선정치 않으면 공작물의 표면이 매끈하게 마무리되지 않고, 치수라든가 형상적인 오차가 생긴다. 도저히 회피할 수 없는 것으로서는 측정기구·공작기계 등의 분해능이라든가, 이것들이 원래부터 지니고 있는 오차이다.
 
분해능이란 기계에 부속하고 있는 척도의 최소 1눈금에 해당하는 길이 혹은 각도를 말하며, 이 1눈금보다 가공오차를 작게 한다는 것은 기대할 수가 없다. 기계류가 원래부터 지니고 있는 오차로서는 극단적인 예로서, 주축이 정확하게 회전하지 못하고 네모난 형상을 그리며 돌고 있는 선반을 사용해서 진원의 철봉을 가공한다는 것은 불가능하다. 또 공구를 부착하는 왕복대를 안내하는 안내면이 정확한 직선이 아닐 때에는 깎여진 공작물은 정확한 원통이 되지 못한다. 선반으로 나사를 깎을 때 엄지나사를 사용하는데, 이 엄지나사가 정확하지 못하면 이에 따라서 만들어지는 나사도 결코 정확하게는 되지 않는다. 또 엄지나사가 정확하더라도 엄지나사의 축과 공작물을 고정하고 있는 주축을 연결하는 톱니바퀴가 불량할 경우에는 올바른 나사가 만들어질 수 없게 된다. 톱니바퀴를 만드는 경우에도 근본이 되는 엄지톱니바퀴가 정확하지 않으면 좋은 톱니바퀴는 만들 수 없다. 이상과 같이 오차가 생기는 원인에는 여러 가지가 있다.
54번째 줄:
 
=== 공작기계의 정도 ===
공작 정도는 공작기계의 정도와 밀접한 관계가 있다. 공작기계의 각 부분을 그 관성력을 무시할 만한 정도의 느린 속도로 이동시킬 때의 정도를 정적 정도라 하고, 실제의 운동 상태와 같은 속도로 상호간에 이동시킬 때의 정도를 동적 정도라고 부른다. 동적 정도는 운동조건에 따라서 변화하며, 또 일반적으로 측정이 곤란하기 때문에 KS에서는 정적 정도시험과 일정한 조건 밑에서 실제로 공작하여 그 공작정도를 검사하는 공작정도시험 및 운전 성능에 관한 시험방법이 정해져 있다. 공작정도는 다시 공작기계의 강성, 각부의 마모, 온도의 변화 혹은 작업원의 숙련도 등의 영향을 받게 된다. 강성은 단위의 변위를 주는 데에 필요한 하중 혹은 힘의 크기를 나타내는 것으로서, 강성이 클수록 변위가 일어나지 않는다. 강성은 하중이 정하중인 경우와 변동하중인 경우에 따라 다르며 전자를 정강성, 후자를 동강성이라 부르고 있다. 강성이 불충분하면 절삭하는 도중에 공구에 부가되는 하중과 공작물의 중량 등에 의해 공작기계가 변형하여 공작 정도가 낮아진다. 이 때문에 설계를 할 때는 공작기계의 각 부에 충분한 강성이 주어지도록 고려되고 있다.
 
=== 마모와 정도 ===
70번째 줄:
== 단위 ==
[[파일:Standard_kilogram,_2.jpg|thumb|[[국립표준기술연구소]]에 보관 중인 [[백금]](90%)과 [[이리듐]](10%) 합금으로 이루어진 킬로그램 원기]]
[[전자]]는 가장 가벼운 입자이다. [[질량]]의 단위를 이해함에 있어서는 가장 작은 질량을 가지고 있는 전자에 주목하고 이를 질량의 단위로 정하자는 주장도 있다. 그렇게 하면 질량을 측정한 결과는 항상 1 이상의 수로 표현될 것이다. 그러나 이에는 결정적으로 불편한 조건이 따른다. 그것은 전자의 질량이 속도에 의해서 변한다고 하는 상대론의 문제와 관련된다. 변하기 쉬운 것을 단위로 삼을 수는 없는 일이다. 물론 정지질량으로 단위를 삼는다고 하면 그러한 불편이 해결될 수도 있겠으나, 그래도 현실적으로 다른 여러 가지 불편이 있다. 그 중의 하나는 전자의 질량이 너무나 작아서 일상적인 물건의 질량, 예컨대 알사탕 1개의 질량을 나타내기 위해서는 1028이나 되는 방대한 수로 표시할 수밖에 없는데, 이것은 역시 여러 모로 불편하기 때문이다.
 
한편 측정 조작의 면에서도 전자를 천칭의 분동으로 삼는다는 것은 불가능한 일이다. 이러한 점을 고려한다면 측정의 단위를 정할 때에는 현실적인 생각으로 처리하는 것이 중요함을 알 수가 있다. 그런 의미에서도 1㎏이라는 크기는 매우 알맞은 양이다. 왜냐하면 전자의 질량은 10<sup>-30</sup>㎏인 한편, [[태양]]은 대략 10<sup>30</sup>㎏에 상당하므로 1㎏ 단위는 그 중간에 해당하기 때문이다. ㎏이라는 단위를 정한 프랑스혁명 시대의 학자는 당시 전자의 존재를 알지 못했고, 태양의 질량을 측정할 줄도 몰랐던 것이다. 그들은 0℃의 물 1,000㎤의 질량을 1㎏의 단위로 정한 데 지나지 않았다. 이것을 선택한 이유는 일상적으로 우리들 인간에게 다루기 쉬운 크기이며, 전인류가 공유할 수 있는 점, 그리고 자연 현상에 직결된 단위라고 하는 점에 절대적인 의미를 인정한 때문이었던 것이다. 여기에는 자유·박애·평등이라는 혁명사상의 반영이 있다. 왜냐하면 그 이전의 단위는 대개 전제군주가 임의로 정한 것이라든가 지방에 따라서 서로 다른 것이었다. 그러므로 물이라고 하는, 전인류가 공유하는 물질을 기초로 삼아 일정 온도에서의 그 체적을 정하면 질량이 확정된다고 하는 자연과학적인 지식을 동원하여서 이 단위를 정한 의의는 크다. 그리고 그 질량의 본으로서 킬로그램원기를 만들었고, [[미터조약]]의 조직을 통해서 전 세계에 이 단위가 보급된 것이다. 다만 그 후 측정 기술의 진보는 이 때 원기를 만드는 작업에 있어서 약간이긴 하지만 오차가 있었음이 밝혀졌다. 오늘날에는 파리 교외의 [[국제도량형국]]에 보관되어 있는 킬로그램원기의 질량이 1㎏으로 통용되고 있다. 이와 같은 사실에 비추어서도 알 수 있듯이 단위의 제정은 결국 하나의 약속으로 이루어지는 것이다. 어떤 시대에 세계의 전문가들이 의논하여 가장 적당하다고 인정한 단위를 조약을 통한 약속으로 세계 각국에서 통용하게 되는 것이다. 그러므로 연구를 더한 결과보다 훌륭한 단위의 제정 방법이 발견되고 그것이 널리 승인받는다면 다시 새로운 조약을 통해서 새로운 단위로 변경하여 통용될 것이다. 1960년에 있은 '미터의 정의의 변경'은 그 대표적인 예이다. 이 때 미터원기는 수십년 전부터의 사명을 마치고 그 임무를 태양 광선의 파장에 인계했던 것이다. 그러나 같은 해에 벌써 길이 단위의 다음 후보로서 [[레이저]]의 이용이 화제에 올랐다. 또 질량 단위도 킬로그램원기와 같이 미시적으로 볼 때에 고르지 못한 점이 많이 드러나는 그런 것이 아니고, 격자결합 따위가 극히 적은, 이상에 가까운 결정을 이룬 것으로 바꿔야 한다는 주장이 차츰 강하게 일고 있다. 이와 같이 단위를 개선하려는 노력은 끊임없이 계속되고 있는 것이다.
97번째 줄:
== 시간의 측정 ==
<!-- === 시각과 시간 == -->
태양이 비치는 지면에 막대기를 세우고, 그 그림자의 이동에 의해서 시각을 알아보는 방법은 [[해시계]]로서 옛날에 사용된 시계의 하나이다. 이 시계를 사용할 경우, 태양이 정남 쪽에 와서 막대 그림자의 길이가 가장 짧아진 때로부터 다음날 그와 같은 그림자로 될 때까지의 사이를 구분하여 하루를 정한다. 이것이 진태양일이라고 불리는 것이다. 그러나 이 진태양일의 길이는 1년 동안에 주기적으로 변화한다. 그 원인은 [[황도]]와 [[적도]]와의 사이에 23.5도의 경사가 있고, 또 지구의 공전이 원궤도를 이루는 것이 아니라 타원궤도이기 때문이다. 이와 같이 하루의 길이가 계절에 따라 다르게 되면 불편하므로 이 불균일을 1년에 걸쳐 평균해서 평균태양일이라는 것을 정했다. 이 평균태양일을 기준으로 하여 정한 시각이 오늘날 우리들이 쓰고 있는 시각이다. 진태양일에 기준해서 정한 시각과 평균태양일에 기준해서 정한 시각과를 비교하면, 1년을 통하여 계절에 의한 차이가 생긴다. 예컨대 2월 10일경에는 평균태양시가 진태양시의 정오보다 약 14분 늦다.
 
이제 시간의 단위로서의 [[초 (시간)|초]]는 하루, 즉 24시간이 정해지면 그 86,400분의 1로써 결정된다. 그렇기 때문에 1958년까지는 초란 평균태양일의 86,400분의 1이라고 정의되어 왔다. 그런데 정밀한 연구가 진행된 결과, 하루의 길이가 아주 조금씩이기는 하지만 해마다 차츰 길어지고 있다는 사실이 밝혀졌다. 예를 들면 1956년 초부터 1957년까지의 2년 동안에 하루의 길이는 1만분의 8초 길어졌다는 사실이 알려졌다. 여기에서 보다 안정된 정의가 요구되어, '초란 1899년 12월 31일 오후 9시에서의 1태양년의 31,556,925.9747분의 1'이라고 개정되었다.
{{본문|초 (시간)}}
[[절대 영도]]에서 [[세슘]]-133 원자의 [[바닥 상태]] (6S1/2) 에 있는 두 개의 초미세 에너지준위 (F=4, F=3)의 주파수 차이를 9,192,631,770 Hz로 정의하고 그 역수를 통해 초를 정의하고 있다.<ref> 시간주파수 연구실 / [http://www.kriss.re.kr/time/lab/equipment01.jsp `원자시계' 한국 표준과학연구원]</ref> 즉, 세슘 133이라는 원자에 어떤 특정 주파수의 전파를 쬐면 세슘 원자가 바닥상태에서 들뜬 상태로 변하게 되는데 이 특정 전파의 진동수를 세고 그 진동수가 9,192,631,770가 되면 1초로 정의하는 것이다. 영국의 물리학자 루이 에센(1908~1997)이 1955년에 처음 이론을 냈다.
 
시각 또는 시간의 결정은 천체의 관측에 의하여 일정한 신호전파로 현재의 시각이 알려지고 있다. 라디오나 텔레비전의 시보는 이 신호전파를 받아서 방송국의 표준시계를 맞추어 두었다가 그 시계로써 전파에 실려 방송하고 있는 것이다.
 
== 주석각주 ==
<references/>