"K-평균 알고리즘"의 두 판 사이의 차이

크기가 바뀐 것이 없음 ,  1년 전
태그: 2017 원본 편집
태그: 2017 원본 편집
 
=== 개요 ===
k-평균 클러스터링 알고리즘은 클러스터링 방법 중 분할법에 속한다. 분할법은 주어진 데이터를 여러 파티션 (그룹) 으로 나누는 방법이다. 예를 들어 n개의 데이터 오브젝트를 입력받았다고 가정하자. 이 때 분할법은 입력 데이터를 n보다 작거나 같은 k개의 그룹으로 나누는데, 이 때 각 군집은그룹은 클러스터를 형성하게 된다. 다시 말해, 데이터를 한 개 이상의 데이터 오브젝트로 구성된 k개의 그룹으로 나누는 것이다. 이 때 그룹을 나누는 과정은 거리 기반의 그룹간 비유사도 (dissimilarity) 와 같은 비용 함수 (cost function) 을 최소화하는 방식으로 이루어지며, 이 과정에서 같은 그룹 내 데이터 오브젝트 끼리의 유사도는 증가하고, 다른 그룹에 있는 데이터 오브젝트와의 유사도는 감소하게 된다.<ref name="HanJiawei">{{서적 인용
|author = Han Jiawei, Jian Pei and Micheline Kamber
|year=2012

편집

475