사용자:Gaepakchinae/연습장/작업 기억: 두 판 사이의 차이

내용 삭제됨 내용 추가됨
편집 요약 없음
24번째 줄:
 
== 용량 ==
작업기억은 일반적으로 제한된 용량을 가지고 있다고 여겨진다. 단기 기억의 용량 한도에 대한 초기의 측정은 1956년에 밀러가 제안한 ""이었다. considered to have limited capacity. An early quantification of the capacity limit associated with short-term memory was the "[[The Magical Number Seven, Plus or Minus Two|magical number seven]]" suggested by Miller in 1956.<ref name="miller">{{Cite journal|author=Miller GA |title=The magical number seven plus or minus two: some limits on our capacity for processing information |journal=Psychological Review |volume=63 |issue=2 |pages=81–97 |date=March 1956 |pmid=13310704 |doi=10.1037/h0043158}} Republished: {{Cite journal|author=Miller GA |title=The magical number seven, plus or minus two: some limits on our capacity for processing information. 1956 |journal=Psychological Review |volume=101 |issue=2 |pages=343–52 |date=April 1994 |pmid=8022966 |doi=10.1037/0033-295X.101.2.343}}</ref> He claimed that the information-processing capacity of young adults is around seven elements, which he called "chunks", regardless of whether the elements are digits, letters, words, or other units. Later research revealed this number depends on the category of chunks used (e.g., span may be around seven for digits, six for letters, and five for words), and even on features of the [[chunking (psychology)|chunks]] within a category. For instance, span is lower for long than short words. In general, memory span for verbal contents (digits, letters, words, etc.) depends on the phonological complexity of the content (i.e., the number of phonemes, the number of syllables),<ref>{{Cite journal|last=Service|first=Elisabet|date=1998-05-01|title=The Effect of Word Length on Immediate Serial Recall Depends on Phonological Complexity, Not Articulatory Duration|url=http://www.tandfonline.com/doi/abs/10.1080/713755759|journal=The Quarterly Journal of Experimental Psychology Section A|volume=51|issue=2|pages=283–304|doi=10.1080/713755759|issn=0272-4987}}</ref> and on the lexical status of the contents (whether the contents are words known to the person or not).<ref>{{Cite journal|first1=Charles |last1=Hulme |first2=Steven |last2=Roodenrys |first3=Gordon |last3=Brown |first4=Robin |last4=Mercer |date=November 1995 |title=The role of long-term memory mechanisms in memory span |journal=British Journal of Psychology |volume=86 |issue=4 |pages=527–36 |url=http://psycnet.apa.org/?fa=main.doiLanding&uid=1996-29539-001 |doi=10.1111/j.2044-8295.1995.tb02570.x}}</ref> Several other factors affect a person's measured span, and therefore it is difficult to pin down the capacity of short-term or working memory to a number of chunks. Nonetheless, Cowan proposed that working memory has a capacity of about four chunks in young adults (and fewer in children and old adults).<ref>{{Cite journal|first1=Nelson |last1=Cowan |year=2001 |title=The magical number 4 in short-term memory: A reconsideration of mental storage capacity |journal=Behavioral and Brain Sciences |volume=24 |pages=87–185 |doi=10.1017/S0140525X01003922 |pmid=11515286}}</ref>
 
Whereas most adults can repeat about seven digits in correct order, some individuals have shown impressive enlargements of their digit span—up to 80 digits. This feat is possible by extensive training on an encoding strategy by which the digits in a list are grouped (usually in groups of three to five) and these groups are encoded as a single unit (a chunk). For this to succeed, participants must be able to recognize the groups as some known string of digits. One person studied by Ericsson and his colleagues, for example, used an extensive knowledge of racing times from the history of sports in the process of coding chunks: several such chunks could then be combined into a higher-order chunk, forming a hierarchy of chunks. In this way, only some chunks at the highest level of the hierarchy must be retained in working memory, and for retrieval the chunks are unpacked. That is, the chunks in working memory act as retrieval cues that point to the digits they contain. Practicing memory skills such as these does not expand working memory capacity proper: it is the capacity to transfer (and retrieve) information from long-term memory that is improved, according to Ericsson and Kintsch (1995; see also Gobet & Simon, 2000<ref name="Gobet F 2000 551–70">{{Cite journal|date=November 2000|title=Some shortcomings of long-term working memory|journal=British Journal of Psychology|volume=91|issue=Pt 4|pages=551–70|doi=10.1348/000712600161989|pmid=11104178|author=Gobet F}}</ref>).