"제3궤조"의 두 판 사이의 차이

16,743 바이트 제거됨 ,  10년 전
번역 완료
(번역 완료)
[[File:London Stansted people mover rail.JPG|thumb|런던 스탠스테드 공항 경전철의 중앙 궤도.]]
 
'''제3궤조'''(thirdThird rail) 방식은 궤도를 따라서 전기를 공급하는 또 다른 궤도를 사용하는 방식을 가리킨다. 대부분 직류를 공급하며, 외부 환경과 차단되어 있는 도시 철도에서 많이 사용한다. 많은 경우 전기를 공급하는 궤도는 차륜의 궤도 바깥쪽에 설치되어 있으나, 일부는 안쪽에 설치되어 있다. 중간중간 절연체로 나뉘어 있다. 이중궤간 철도의 세 번째 궤도와는 무관하다.
 
열차에는 급전 궤도와 접촉하는 금속 집전 장치가 설치되어 있다. 차륜이 놓여 있는 궤도를 또 다른 극으로 하여 회로가 구성된다. 급전 궤도는 대개 고전도성 철로 만들어져 있으며, 저항을 줄이기 위하여 차륜이 설치된 궤도와 전기적으로 연결되어 있다. 철도 건널목이나 평면 교차점에서는 급전 궤도가 끊긴다.
 
== 역사 ==
제3궤조 방식은 전기 철도의 역사에서 내장 축전지 다음으로 가장 오래된 급전 방식이다. 상단부 접촉 급전이 최초로 개발되었고, 측면이나 하단 접촉 방식은 이후에 개발되었다. 가공 전차선은 노면 전차에서 주로 사용하였으며, 이후 간선 철도에 천천히 등장하였다. 1879년 베를린 산업 박람회에서 [[지멘스]]에서 개발한 실험적 전동차가 첫 선을 보였고, 당시 운행한 차량은 급전 궤도가 가운데에 있다.
 
1883년에 개통한 브라이튼에 있는 볼크의 전기 철도를 포함한 일부 초기 전기 철도는 궤도를 전도체로 사용하였다. 1886년에 추가로 급전 궤도가 설치되었고, 현재에도 영업 중이다. 같은 해에 최초로 궤도 바깥에 제3궤도를 설치한 전기 철도가 개통하였다. 최초로 가운데에 제3궤도를 설치한 전기 철도는 아일랜드에서 1885년에 개통하였으나, 이후 폐업하였다. 1880년대의 노면 전차에서 제3궤조를 많이 도입하였으나, 전압 강하와 이물질 대처 문제 때문에 가공 전차선으로 변경하였다.
 
A third rail supplied power to the world's first electric underground railway, the [[City & South London Railway]], which opened in 1890 (now part of the [[Northern Line]] of the London Underground). In 1893, the world's second third-rail powered city railway opened in Britain, the [[Liverpool Overhead Railway]] (closed 1956 and dismantled). The first US third-rail powered city railway in revenue use was the 1895 [[Metropolitan West Side Elevated]], which soon became part of the [[Chicago 'L']]. In 1901, [[Granville Woods]], a prominent African-American inventor, was granted a {{US patent|687098}}, covering various proposed improvements to third rail systems. This has been cited to claim that he invented the third rail system of current distribution. However, by that time there had been numerous other patents for electrified third-rail systems, including [[Thomas Edison]]'s {{US patent|263132}} of 1882, and third rails had been in successful use for over a decade, in installations including the rest of Chicago 'elevateds', as well as these in [[Brooklyn]], New York (if not to mention the development outside the US). To what extent Woods' ideas were adopted is thus a matter of controversy.<ref>[http://www.rpi.edu/~fouche/NewYorkTimes/DavidHead.html]</ref>
 
In Paris, third rail appeared in 1900 in the main-line tunnel connecting the [[Gare d'Orsay]] to the rest of the CF Paris-Orléans network. Main-line third rail electrification was later expanded to some suburban services.
 
집전 장치가 위에 달려 있는 제3궤조는
Top contact third rail (see below) seems to be the oldest form of power collection. Railways pioneering in using other less hazardous types of third rail were the [[New York Central Railroad]] on the approach to its NYC's [[Grand Central Terminal]] (1907 — another case of a&nbsp;third-rail mainline electrification), Philadelphia's [[Market-Frankford Line|Market Street Subway-Elevated]] (1907), and the [[Hamburg U-Bahn|Hochbahn in Hamburg]] (1912) — all had bottom contact rail. However, the Manchester-Bury Line of the [[Lancashire & Yorkshire Railway]] tried side contact rail in 1917. These technologies appeared in wider use only at the turn of the 1920s and in the 1930s on, e.g., large-profile lines of the [[Berlin U-Bahn]], the [[Berlin S-Bahn]] and the [[Moscow Metro]]. The Hamburg S-Bahn has used a side contact third rail at 1200 V DC since 1939.
 
1956년 세계 첫 고무 차륜 철도 노선인 [[파리 메트로]] 11호선이 개통되었다. 대차를 올바른 위치로 안내하는 가이드 레일이 전도체의 역할을 담당한다. 1971년에 개통된 [[삿포로 지하철]] 난보쿠 선에서는 이 방법을 보완하여, 가이드 레일의 위치를 변경하였다. 2004년에 개통된 보르도 노면 전차에서, 노면 전차용 제3궤조가 부활하였다.
 
일부 국가에서는 제3궤조 방식을 거의 사용하지 않기 때문에 제3궤조 방식이 구식으로 오해되는 일이 있지만, 제3궤조 방식은 현재에도 계속 사용되고 있다.
Third rail is not obsolete. There are, however, countries (particularly Japan, South Korea, India, Spain) more eager to adopt [[Pantograph (rail)|overhead wiring]] to their urban railways. But at the same time, there were (and still are) many new third rail systems built elsewhere, including technologically advanced countries (e.g. [[Copenhagen Metro]], [[Taipei Metro]], [[Wuhan Metro]]). Bottom powered railways (it may be too specific to use the term 'third rail') are also usually those having rubber-tyred trains, whether it is a heavy metro (except two other lines of [[Sapporo Subway]]) or a small capacity [[people mover]] (PM). Practically the type of railways where third rail is no longer used in new systems is regional and long distance rail, which require higher speeds and voltages.
 
{{Fix bunching|beg}}
[[File:Top contact pickup shoe.jpg|thumb|right|With surface contact third and fourth rail systems a heavy "shoe" suspended from a wooden beam attached to the bogies collects power by sliding over the top surface of the electric rail. This view shows a [[British Rail Class 313]] train.]]
{{Fix bunching|mid}}
[[File:Arcing pickup shoe.jpg|thumb|right|The [[London Underground]] uses a four-rail system where both conductor rails are live relative to the running rails, and the positive rail has twice the voltage of the negative rail. Arcs like this are normal and occur when the electric power collection shoes of a train that is drawing power reach the end of a section of conductor rail.]]
{{Fix bunching|mid}}
[[File:Thirdrail.SouthStation.agr.jpg|thumb|right|Conductor rail on the [[MBTA]] [[Red Line (MBTA)|Red Line]] at [[South Station]] in [[Boston]], consisting of two strips of aluminium on a steel rail to assist with heat and electrical conduction]]
{{Fix bunching|end}}
 
== 주행 궤도를 이용한 전력 공급 ==
가공 전차선처럼, 귀전 전력은 주행 궤도로 돌아오며, 누설 전류는 무시된다. 고무 차륜을 사용하는 경우 귀전 전력을 위해서 전도체 가이드 바가 필요하다. [[런던 지하철]]에서는 귀전 전력을 위한 별도의 4번째 궤도를 따로 설치하였다. 밀라노 메트로 M1호선에는 제3궤조가 귀전 전력으로 사용되며, 급전 전력은 별개의 전극을 사용한다. 노선의 북쪽에서는 가공 전차선을 사용한다.
 
전류 손실을 줄이고 급전소 간격을 넓히기 위하여, 급전 궤도는 알루미늄/철 합금이나 기타 합성 전도체를 사용한다. 알루미늄의 전기 전도성은 좋은 편이며, 스테인리스 스틸은 마모에 강하다.
The third rail is an alternative to [[overhead lines]] that transmit power to trains by means of [[pantograph (rail)|pantograph]]s attached to the trains. Whereas overhead-wire systems can operate at [[25 kV AC|25&nbsp;kV]] or more, using [[alternating current]] (AC), the smaller clearance around a live rail imposes a maximum of about 1200&nbsp;V ([[Hamburg S-Bahn]]), and [[direct current]] (DC) is used. Trains on some lines or networks use both power supply modes (cf. below, "Compromise systems").
 
One method for reducing current losses (and thus increase the spacing of feeder/sub stations, a major cost in third rail electrification) is to use a composite conductor rail of a hybrid aluminium/steel design. The aluminium is a better conductor of electricity, and a running face of stainless steel gives better wear.
 
There are several ways of attaching the stainless steel to the aluminium. The oldest is a co-extruded method, where the stainless steel is extruded with the aluminium. This method has suffered, in isolated cases, from de-lamination (where the stainless steel separates from the aluminium); this is said to have been eliminated in the latest co-extruded rails. A second method is an aluminium core, upon which two stainless steel sections are fitted as a cap and linear welded along the centre line of the rail. Because aluminium has a higher [[coefficient of thermal expansion]] than steel, the aluminium and steel must be positively locked to provide a good current collection interface. A third method rivets aluminum bus strips to the web of the steel rail. The photo below-right depicts such a rail.
 
== 보완 시스템 ==
일부 체계에서는 제3궤조를 일부만 사용하고, 가공 전차선이나 내연 기관을 나머지에 사용한다.
 
===USA===
[[File:CTA third rail contact shoe.jpg|thumb|[[Chicago Transit Authority]] third rail [[contact shoe]] of [[Chicago 'L']] car.]]
In New York City, electric trains that must use the third rail leaving [[Grand Central Terminal]] on the former [[New York Central Railroad]] (now [[Metro-North Railroad]]) switch to [[overhead lines]] at Pelham when they need to operate out onto the former [[New York, New Haven and Hartford Railroad]] (now Metro North's [[New Haven Line]]) line to [[Connecticut]]. The switch is made "on the fly" controlled from the engineer's position.
 
Also in New York City where diesel exhaust would pose a health hazard in underground station areas, [[Metro-North]], [[Long Island Rail Road]] and [[Amtrak]] use diesel locomotives that can also be electrically powered by third-rail. This kind of locomotive (for example the [[P32AC-DM]] or the EMD/Siemens built [[DM30AC]] of LIRR), can transition between the two modes while underway. The third-rail auxiliary system is not as powerful as the diesel engine, so on open-air (non-tunnel) trackage run the engines typically run in diesel mode, even where third rail power is available.
 
In [[Manhattan]], New York City, and in [[Washington, D.C.]], local ordinances required electrified street railways to draw current from a third rail and return the current to a fourth rail, both installed in a continuous vault underneath the street and accessed by means of a collector that passed through a slot between the running rails. When streetcars on such systems entered territory where overhead lines were allowed, they stopped over a pit where a man detached the collector (''plow'') and the [[motorman]] placed a [[trolley pole]] on the overhead. Some sections of the former London tram system also used the [[conduit current collection]] system, also with some tramcars that could collect power from both overhead and under-road sources.
 
The [[Blue Line (MBTA)|Blue Line]] of [[Boston, Massachusetts|Boston's]] [[Massachusetts Bay Transportation Authority|MBTA]] uses third rail electrification from the start of the line downtown to [[Airport (MBTA station)|Airport]], where it switches to overhead catenary for the remainder of the line to [[Wonderland (MBTA station)|Wonderland]]. The [[Orange Line (MBTA)|Orange Line's]] [[Hawker Siddeley]] 01200 series rapid transit cars (essentially a longer version of the Blue Line's 0600's) recently had their pantograph mounting points removed during a maintenance program; these mounts would have been used for pantographs which would have been installed had the Orange Line been extended.
 
Dual power supply method was also used on some US [[interurban]] railways that made use of newer third rail in suburban areas, and existing overhead streetcar (trolley) infrastructure to reach downtown, for example the [[Skokie Swift]] in Chicago.
 
=== 영국 ===
[[File파일:Eurostar at Vauxhall.jpg|thumb|런던 주변의 유로스타]]
일부 영국 철도 차량은 가공 전차선과 제3궤조 둘 다를 사용할 수 있다. 유로스타 차량의 경우, 고속선 주행 시 교류 25kV, 일부 국가 기존선 주행 시 직류 1.5kV/3kV를 사용한다. 제작 당시에는 런던 및 근교 지역에서 사용되는 제3궤조를 위한 별도의 집전 장치가 있었다. 가공 전차선과 제3궤조 사이 전환은 운행 중에 여러 번 이뤄져야 했다. 이 과정을 잊어버리면 운행에 지장을 준다. 프랑스에 진입할 때 제3궤조 집전 장치를 접어넣지 않으면 궤도변 장치에 손상을 줘서, 채널 터널의 끝부분에 콘크리트 블록을 설치하여 접어넣지 않으면 파괴시켰다. 영국에 진입할 때 팬토그래프를 내리지 않으면 차량 한계 때문에 팬토그래프가 망가질 수 있다.
 
2007년 11월 14일 영국 쪽 종착역이 변경되어서 제3궤조 집전 장치를 탈거하였다.
 
 
====Thameslink====
{{Main|Thameslink}}
The route was originally third rail throughout but a number of technical electrical earthing problems, plus part of the route also being covered already by overhead electric wires provided for electrical-hauled freight and [[Regional Eurostar]] services led to the change. The cross-city [[Thameslink]] service runs on the Southern Region third rail network from [[Farringdon station]] southwards and on overhead line northwards from Farringdon to [[Bedford]]. The changeover is made whilst stationary at Farringdon.
 
====Northern City====
{{Main|Northern City Line}}
On the Moorgate to Hertford and Welwyn suburban service routes, the [[East Coast Main Line]] sections are 25 kV AC, with a changeover at [[Drayton Park railway station]] because of the size of the tunnels leading to [[Moorgate station]] are too small to allow overhead electrification.
 
=== 유럽 대륙 ===
[[오슬로 T-반메트로]]의 서부 노선은 가공 전차선(일부는 제3궤조로 변경됨), 동부 노선은 제3궤조를 사용하였다. 과거에 사용했던 차량 중에는 제3궤조와 가공 전차선 둘 다에서 운행할 수 있었던 차량이 있었으나, 2010년까지 모두 폐차하였고 가공 전차선을 사용하는 노선을 제3궤조로 변경하고 있다. [[로테르담 메트로]]는 기본적으로 제3궤조를 사용하지만, 일부 교외 노선에는 가공 전차선을 사용한다.
 
프랑스 보르도에 2004년 개통된 노면 전차는 급전 궤도가 가운데에 설치되어 있다. 8m 급전/3m 단전으로 단위가 나뉘어 있으며, 차량에서 보내 오는 신호에 따라서 전력 공급이 결정된다. 이러한 시스템은 프랑스의 다른 도시에도 보급되었다. 모당으로 가는 프레유스 선은 직류 1500V 제3궤조로 전철화되었으나, 이후 같은 전압의 가공 전차선으로 변경되었다. 역에는 가공 전차선이 설치되어 있었다.
파리 생 라자르, 인발리드, 오르세이 역은 각각 1924, 1901, 1900년에 제3궤조로 전철화되었다. 이후 다른 [[SNCF]] 철도 노선의 전철화에 맞추어서 가공 전차선으로 변경되었다. 맨체스터 지역의 L&YR 철도는 1913년 가공 전차선, 1917년 제3궤조, 1992년 다시 가공 전차선으로 전철화되었다. 도심 지역의 노면 전차에서 제3궤조를 사용하면 보행자에게 위험할 수 있다는 이유 때문에 이후 변경되었다.
 
바르셀로나 메트로의 노선 5개 중 3개는 제3궤조에서 가공 전차선으로 변경되었다. 2003년까지 단계별로 작업이 진행되었다. 남부 런던의
 
Three lines of five making up the core of [[Barcelona Metro]] network changed to overhead power supply from third rail. This operation was also done by stages and completed in 2003.
 
The opposite took place in south London. The South London Line of the [[London, Brighton and South Coast Railway|LBSCR]] network between Victoria and London Bridge was electrified with catenary in 1909. The system was later extended to Crystal Palace, [[Coulsdon North railway station|Coulsdon North]] and Sutton. In the course of main-line third rail electrification in south-east England, the lines were converted by 1929.
 
The first overhead electric trains appeared on the ''Hamburg-Altonaer Stadt- und Vorortbahn'' in 1907. Thirty years later, the main-line railway operator, [[Deutsche Reichsbahn]], influenced by the success of the third-rail [[Berlin S-Bahn]], decided to switch what was now called [[Hamburg S-Bahn]] to third rail. The process began in 1940 and was not finished until 1955.
 
In 1976–1981, the third-rail [[Vienna U-Bahn]] U4 Line substituted the Donaukanallinie and Wientallinie of the [[Wiener Stadtbahn|''Stadtbahn'']], built c1900 and first electrified with overhead wires in 1924. This was part of a big project of consolidated U-Bahn network construction. The other electric ''Stadtbahn'' line, whose conversion into heavy rail stock was rejected, still operates under wires with light rail cars (as U6), though it has been thoroughly modernised and significantly extended. As the platforms on the Gürtellinie were not suitable for raising without much intervention into historic [[Otto Wagner]]'s station architecture, the line would anyway remain incompatible with the rest of the U-Bahn network. Therefore an attempt of conversion to third rail would have been pointless. In Vienna, paradoxically, the wires were retained for aesthetic (and economic) reasons.
 
The western portion of the [[Yellow Line (Chicago Transit Authority)|Skokie Swift]] of the [[Chicago 'L']] changed from catenary wire to third rail in 2004, making it fully compatible with the rest of the system.
 
The reasons for building the overhead powered [[Tyne & Wear Metro]] network roughly on lines of the long-gone third-rail [[Tyneside Electrics]] system in Newcastle area are likely to have roots in economy and psychology rather than in the pursuit of compatibility. At the time of the Metro opening (1980) there were no third-rail light rail vehicles on the market and the latter technology was confined to much more costly heavy rail stock. Also the far-going change of image was desired: the memories of the last stage of operation of the Tyneside Electrics were far from being favourable. This was the construction of the system from scratch after 11 years of ineffective diesel service.
 
== 최고 전압 ==
 
== 가공 전차선과 병용 ==
가공 전차선과 병용하는 구간이 존재할 수도 있다. 1940년부터 1955년까지 함부르크 S-반에서 사용하였으며, 현재에도 베를린이나 뉴욕 펜실베이니아 역 등에서 찾아볼 수 있다. 직류와 교류를 같이 사용하는 경우에는 교류 변합기가변압기가 의도하지 않은 대로 작동할 수도 있으므로, 이러한 이중 전철화는 잘 사용하지 않는다.
 
프랑스와 이탈리아의 국경역인 모당 역에서는 프랑스 열차가 직류 1500V 제3궤조, 이탈리아 열차가 직류 3000V 가공전차선(초기에는 3상 교류)을 사용한 적이 있었다. 프랑스 쪽에서 제3궤조를 가공 전차선으로 바꾸었을 때, 역 전체 전압이 1500V로 내려갔다. 현재 이탈리아 열차는 이 역에서 전압을 바꾸어야 한다.
 
== 기술 개발 ==
The introduction of [[supercapacitor]]s has the potential to lower the cost for trains running on third rail and overhead wires. Kinetic energy generated while braking is stored in supercapacitors on board the vehicle. This energy is then used when accelerating. This allows the supercapacitors to reduce current draw through the electrical pickup during acceleration, putting less stress on the electrical grid. Claimed peak energy reduction is around 30%.{{Citation needed|date=May 2010}}
 
The technology can be used equally well for diesel electric locomotives, where 25% to 40% reduction in energy consumption is claimed.{{Who|date=May 2010}}
 
Since 2003, Mannheim Stadtbahn in Mannheim, Germany has operated a light-rail vehicle using electric double-layer supercapacitors to store braking energy.<ref>[http://www.railwaygazette.com/news_view/article/2006/07/4432/ultracaps_win_out_in_energy_storage-1.html UltraCaps win out in energy storage]. Richard Hope, ''[[Railway Gazette International]]'' July 2006</ref><ref>M. Steiner. [http://www.allianz-pro-schiene.de/veranstaltungen/2006/workshop-verbesserung-der-umweltwirkungen-des-eisenbahnverkehrs/praesentation-kehl.pdf MITRAC Energy Saver]. Bombardier presentation (2006).</ref>
 
A number of companies are developing electric double-layer supercapacitor technology. [[Siemens AG]] is developing mobile energy storage based on double-layer supercapacitors called Sibac Energy Storage <ref>Siemens AG [http://www.transportation.siemens.com/ts/en/pub/products/green_mobility/our_solutions/on_a_roll/sibac.htm Sibac ES] Sibac ES Product Page (as of November 2007)</ref> Sitras SES, are developing stationary trackside version <ref>Siemens AG [http://www.transportation.siemens.com/ts/en/pub/products/green_mobility/our_solutions/for_the_net/sitras.htm Sitras SES] Sitras SES Product Page (as of November 2007)</ref>. The company Cegelec is also developing an electric double-layer capacitor-based energy storage system{{Citation needed|date=March 2007}}.
 
==In model trains==
In 1906, the [[Lionel Corp.|Lionel]] electric trains became the first model trains to use a [[Third rail (model railroading)|third rail]] to power the locomotive. Lionel track uses a third rail in the center, while the two outer rails are electrically connected together. This solved the problem two-rail model trains have when the track is arranged to loop back on itself, as ordinarily this causes a short-circuit. (Even if the loop was gapped, the locomotive would create a short and stop as it crossed the gaps.) Lionel electric trains also operate on alternating current. The use of alternating current means that a Lionel locomotive cannot be reversed by changing polarity; instead, the locomotive sequences among several states (forward, neutral, backward, for example) each time it is started. Märklin three-rail trains use a short spike of DC voltage to reverse a relay within the locomotive while it is stopped. Märklin's track does not have an actual third rail, instead, a series of short pins provide the current, taken up by a long "shoe" under the engine. This shoe is long enough to always be in contact with several pins. This is known as the [[stud contact system]] and has certain advantages when used on outdoor model railway systems. The [[ski collector]] rubs over the studs inherently self cleans. When both track rails are used for the return in parallel there is much less chance of current interruption due to dirt on the line.
 
Modern model train sets today use only two rails. Many supply locomotives with direct current (DC) where the voltage and polarity of the current controls the speed and direction of the DC motor in the train. A growing exception is [[Digital Command Control]] (DCC), where bi-polar DC is delivered to the rails at a constant voltage, along with digital signals that are decoded within the locomotive. The bi-polar DC carries digital information to indicate the instruction and the locomotive that is being commanded when multiple locomotives are present on the same track.
 
Some model railroads realistically mimic the third rail configurations of their full-sized counterparts; such models may or may not actually draw power from the third rail (most do not).
 
== 같이 보기 ==
{{Commons category|Third rail}}
*[http://patimg1.uspto.gov/.piw?Docid=00263132&PageNum=2&idkey=NONE 1882년 토마스 에디슨의 제3궤조 특허]
*[http://trb.org/publications/circulars/ec058/15_02_Swanson.pdf Lightrail without wires] - Paper on Bordeaux' new Tram with street level third rail (by the Transportation Research Board of the National Academies)
*[http://homepage.ntlworld.com/russelliott/3rd-4th.html Details] of the UK 3rd/4th rail design.
*[http://www33.brinkster.com/iiiii/inventions/3rdrail.asp The "third rail"] A short history.
*[http://sonic.net/~mly/Caltrain-Electrification/1992-report-400dpi/e75-095.html Morrison-Knudsen 1992]
 
[[분류:철도차량공학]]
 
<!--
[[cs:Napájecí kolejnice]]
[[de:Stromschiene]]
[[yi:דריטער רעיל]]
[[zh:軌道供電]]
-->

편집

4,122