미세 구조 상수
전자기 상호작용에 관련된 상수
미세 구조 상수(微細構造常數, 영어: fine structure constant, 기호 α) 또는 조머펠트 미세 구조 상수(Sommerfeld -)는 전자기력의 세기를 나타내는 물리상수다. 원자물리학과 입자물리학에서 자주 나타난다. 1916년 아르놀트 조머펠트가 발견하였다. 원래 조머펠트가 원자 방출 스펙트럼의 미세 구조를 연구할 때 발견하였으므로 이런 이름이 붙었다.
미세 구조 상수 α | |
---|---|
종류: | 물리 상수 |
값: | 7.297 352 5698 × 10-3 |
오차: | ±0.000 000 0024 × 10-3 |
출처: | CODATA 2010[1] |
미세 구조 상수의 역수 α−1 | |
---|---|
종류: | 물리 상수 |
값: | 137.035 999 074 |
오차: | ±0.000 000 044 |
출처: | CODATA 2010[1] |
![]() | |
대칭 | |
---|---|
시공간 | 병진 대칭 · 로런츠 군 · 푸앵카레 군 · 등각 대칭 |
이산 대칭 | 전하 켤레 대칭 (C) · 반전성 (P) · 시간 역전 대칭 (T) |
기타 | 게이지 이론 · 초대칭 |
대칭 깨짐 | 자발 대칭 깨짐 · 골드스톤 보손 · 힉스 메커니즘 · 변칙 |
도구 | |
기본 개념 | 전파 인자 · 윅 정리 (표준 순서) · LSZ 축약 공식 · 상관 함수 |
양자화 | 정준 양자화 · 경로 적분 |
산란 이론 | 산란 행렬 · 만델스탐 변수 |
섭동 이론 | 파인만 도형 · 질량껍질 · 가상 입자 |
조절과 재규격화 | 파울리-빌라르 조절 · 차원 조절 · 최소뺄셈방식 · 재규격화군 · 유효 이론 (유효 작용) |
게이지 이론 | 공변미분 · 파데예프-포포프 유령 · BRST 대칭 · 워드-다카하시 항등식 |
이론 | |
장난감 모형 | 사승 상호작용 · 콜먼-와인버그 모형 · 시그마 모형 · 베스-추미노 모형 |
게이지 이론 | 양자 전기역학 · 양-밀스 이론 · 양자 색역학 · 전기·약 이론 · 표준 모형 |
대통일 이론 | 대통일 이론 · 페체이-퀸 이론 · 시소 메커니즘 · 최소 초대칭 표준 모형 · 테크니컬러 |
학자 | |
초기 학자 | 위그너 · 마요라나 · 바일 |
전자기력 | 디랙 · 슈윙거 · 도모나가 · 파인먼 · 다이슨 |
강한 상호작용 | 유카와 · 겔만 · 그로스 · 폴리처 · 윌첵 |
약한 상호작용 | 양전닝 · 리정다오 · 난부 · 글래쇼 · 살람 · 와인버그 · 고바야시 · 마스카와 · 힉스 · 앙글레르 |
재규격화 | 펠트만 · 엇호프트 · 윌슨 |
2020년 4월에, 130억 광년 떨어진 곳에서 미세구조상수가 다른 곳이 관측되었다는 논문이 발표되었다.[2] 이는 전자기법칙이 전 우주에서 같지는 않을 수 있다는 점을 시사한다.
정의편집
미세 구조 상수 는 국제단위계에서는 다음과 같이 정의한다.
여기서 는 기본 전하, 는 원주율, 는 디랙 상수, 는 빛의 속도, 은 진공의 유전율이다. 이 값은 두 전자가 (전자의 컴프턴 파장)의 거리를 두고 떨어져 있을 때, 그 전기적 위치 에너지와 전자의 정지 에너지 의 비로 해석할 수 있다.
유도편집
CGS 단위계에서는 인자가 전하량에 포함되므로 식이 다음과 같이 바뀐다.
는 차원이 없는 상수이기 때문에, 그 값은 단위계에 상관없이 같다. 여기에 들어가는 기본 상수값을 대입해보면
- =0.007 292 31
- = 137.131
이 나온다. 이 값은 실제 측정값과는 차이가 있다. 여기에 양자 전기역학에서 예견하는 전자들의 상호작용을 통한 보정을 고려할 수 있다. 이는 전자의 자기 모멘트와 미세 구조 상수와의 관계를 통해 구해진 것으로, 다음과 같다.
- =0.007 297 352 5698(24)
- = 137.035 999 074(44)
각주편집
- ↑ 가 나 Mohr, Peter J.; Barry N. Taylor, David B. Newell (2010년 11월 13일). “CODATA Recommended Values of the Fundamental Physical Constants: 2010”. 《Reviews of Modern Physics》 84 (4): 1527–1605. arXiv:1203.5425. Bibcode:2012RvMP...84.1527M. doi:10.1103/RevModPhys.84.1527.
- ↑ https://advances.sciencemag.org/content/6/17/eaay9672