보르수크-울람 정리

위상수학에서, 보르수크-울람 정리(영어: Borsuk–Ulam theorem)는 초구에서 같은 차원의 유클리드 공간으로 가는 연속함수의 경우, 대척점에서의 함수의 값이 일치하는 경우가 항상 존재한다는 정리이다.

정의편집

보르수크-울람 정리에 따르면, 임의의 연속함수  에 대하여,

 

인 점  이 존재한다. 여기서   대척점이다.

역사편집

이 정리는 스타니스와프 울람이 추측했고, 카롤 보르수크가 1933년 증명했다.[1]

참고 문헌편집

  1. Borsuk, K. (1933). “Drei Sätze über die n-dimensionale euklidische Sphäre”. 《Fundamenta Mathematicae》 (독일어) 20: 177–190. JFM 59.0560.01. Zbl 0006.42403. 

외부 링크편집