삼진환

사영기하학에서, 삼진환(三進環, 영어: ternary ring)은 사영 평면의 점의 일종의 좌표계를 구성할 수 있는 대수 구조이며, 하나의 3항 연산을 갖는다.

정의편집

삼진환  은 다음과 같은 데이터로 주어진다.

  •  는 3항 연산이다.
  •   는 상수(0항 연산)이다.

이는 다음 공리들을 만족시켜야 한다.

  •  
  • 임의의  에 대하여,  
  • 임의의  에 대하여, 만약  라면,   가 유일하게 존재한다.
  • 임의의  에 대하여,   가 유일하게 존재한다.
  • 임의의  에 대하여, 만약  라면, 다음 연립 방정식은 유일한 해  를 갖는다.
     
     

성질편집

특별한 이항 연산편집

삼진환  이 주어졌을 때, 다음과 같은 두 연산을 정의하자.

 
 

그렇다면,   은 각각 항등원을 갖는 유사군을 이룬다.

삼진환에 대응하는 사영 평면편집

삼진환  이 주어졌을 때, 이에 대응하는 다음과 같은 사영 평면  을 구성할 수 있다. 우선, 점과 직선의 집합은 각각 다음과 같다.

 

이 사이의 인접 관계

 

는 다음과 같다.

 
 
 
 
 
 
 
 

또한,

 

은 그 속의 사각형을 이룬다.

사각형이 주어진 모든 사영 평면은 항상 위와 같은 꼴로 구성될 수 있다.

서로 다른 두 삼진환이 동형의 사영 평면을 정의할 대수적 필요 충분 조건이 알려져 있다.[1]

편집

 나눗셈환이라고 하자. 그렇다면,

 

를 정의한다면, 이는 삼중환을 이룬다.

역사편집

1941년에 마셜 홀(영어: Marshall Hall)이 사영 평면을 연구하기 위하여 삼진환의 개념 및 “삼진환”(영어: ternary ring)이라는 용어를 도입하였다.[2] 이름과 달리, 삼진환은 이 아니다.

일부 문헌에서 이 개념은 “삼진체”(三進體, 영어: ternary field) 또는 “평면 삼진환”(平面三進環, 영어: planar ternary ring) 등으로 불린다.

참고 문헌편집

  1. Grari, A. (2004년 9월). “A necessary and sufficient condition so that two planar ternary rings induce isomorphic projective planes”. 《Archiv der Mathematik》 (영어) 83 (2): 183–192. doi:10.1007/s00013-003-4580-9. Zbl 1067.51002. 
  2. Hall, Marshall (1943). “Projective planes”. 《Transactions of the American Mathematical Society》 (영어) 54: 229–277. doi:10.1090/S0002-9947-1943-0008892-4. ISSN 0002-9947. JSTOR 1990331. MR 8892. Zbl 0060.32209. 

외부 링크편집