음수

0보다 작은 숫자

역사편집

최초로 사용한 사람은 인도인인 623년경의 브라마굽타로, 단순히 음수에 대한 사칙연산만을 기술하였다.[1]

1650년대 이후로 음수가 자유로이 사용되었지만 그 개념이나 논리적 기초가 확실하지 않았기 때문에 수학자들은 정당성의 문제를 회피하거나 그 사용에 이의를 제기하였다.[2]

1657년 존 허드(John Hudde, 1633년~1704년)가 음수와 양수 모두를 표시하는 문자를 사용한 이후부터 수학자들은 자유로이 그런 방식을 따랐다.[3]

음수를 포함한 연산편집

더하기편집

두 음수의 더하기는 두 양수의 더하기와 매우 유사하다.

(−3) + (−5)  =  −8.

양수와 음수을 혼합하여 더할 때에는 음수를 차감되는 양의 값으로 생각할 수 있다.

8 + (−3)  =  8 − 3  =  5  그리고 (−2) + 7  =  7 − 2  =  5.

빼기편집

음수가 아닌 두 수의 빼기로 음수를 산출하는 것이 가능하다.

5 − 8  =  −3

일반적으로 양수의 빼기는 같은 절대값의 음수의 더하기와 같은 결과를 산출한다. 그러므로

5 − 8  =  5 + (−8)  =  −3

그리고

(−3) − 5  =  (−3) + (−5)  =  −8

반면, 음수의 빼기는 같은 절대값의 양수의 더하기와 같은 결과를 산출한다. (이 아이디어는 빚의 감소는 신용의 증가와 같다는 것에서 유래한다.) 그러므로

3 − (−5)  =  3 + 5  =  8

그리고

(−5) − (−8)  =  (−5) + 8  =  3.

곱하기편집

두 음수의 곱이 양수여야 한다는 관습은 곱셈이 분배 법칙을 따르기 위해서 필요하다. 이러한 경우 다음이 성립한다.

(−2) × (−3)  +  2 × (−3)  =  (−2 + 2) × (−3)  =  0 × (−3)  =  0

2 × (−3) = −6이기 때문에, 곱셈 (−2) × (−3)6이어야 한다.

나누기편집

음수가 포함된 나누기 또는 분수의 경우

 

따라서

 

같이 보기편집

각주편집

  1. 모리스 클라인저, 심재관역, 《수학의 확실성》, (주)사이언스북스, 2007, 191쪽
  2. 모리스 클라인저, 심재관역, 《수학의 확실성》, (주)사이언스북스, 2007, 210쪽
  3. 모리스 클라인저, 심재관역, 《수학의 확실성》, (주)사이언스북스, 2007, 217쪽