초른 보조정리

수학에서 초른 보조정리(Zorn의補助定理, 영어: Zorn’s lemma) 또는 쿠라토프스키-초른 보조정리(Kuratowski-Zorn補助定理, 영어: Kuratowski–Zorn lemma)는 부분 순서 집합이 극대 원소를 가질 충분조건을 제시하는 보조정리다. 선택 공리동치이다.

정의

편집

원순서 집합  정렬 사슬(영어: well-ordered chain)은 정렬 집합을 이루는 사슬  이다. (공집합 역시 정렬 사슬로 간주한다.) 또한, 원순서 집합  에 대하여,   극대 원소들의 집합이라고 하자. (극대 원소란 임의의  에 대하여 만약  이라면  을 만족시키는 원소  이다.) 또한,   는 각각 상폐포하폐포를 뜻한다.

원순서 집합  닫힌 원순서 집합이라고 하자. (즉,  의 모든 정렬 사슬이 상계를 갖는다고 하자. 특히, 공집합의 상계가 존재하므로  공집합이 아니다.) 초른 보조정리에 따르면,  이다. 다시 말해, 임의의  에 대하여  와 비교 가능한 극대 원소  가 존재한다. (특히,  이므로  이다. 다시 말해,  는 하나 이상의 극대 원소를 갖는다.)

증명:

귀류법을 사용하자. 닫힌 원순서 집합  이 주어졌으며, 또한  라고 하자. 그렇다면, 다음과 같은 두 함수를 선택 공리를 사용하여 고를 수 있다.

  • 함수   의 모든 정렬 사슬  에 대하여, 그 상계  를 대응시킨다. (여기서   의 정렬 사슬들의 집합이다.) 또한, 특히  라고 하자.
  • 함수   를 만족시킨다. (  를 뜻한다.)

임의의 순서수  에 대하여, 초한 귀납법으로 다음과 같은 원소열을 정의하자.

 

임의의 두 순서수  에 대하여  이면  이므로,  는 순서수의 고유 모임  에서  로 가는 단사 함수를 정의한다. 그러나 순서수의 고유 모임은 집합의 부분 집합이 될 수 없으므로, 모순이다. 따라서 귀류법이 성립한다.

원순서 집합  사슬들의 부분 순서 집합  을 생각하자. 그렇다면, 사슬들의 사슬  합집합은 역시 사슬이므로, 초른 보조정리에 따라   속에는 극대 사슬이 존재하며,  의 임의의 사슬은 어떤 극대 사슬의 부분 집합이다. 이 사실을 하우스도르프 극대 원리(Hausdorff極大原理, 영어: Hausdorff maximal principle)라고 한다. 이 역시 선택 공리 및 초른 보조정리와 동치이다.

역사

편집

하우스도르프 극대 원리는 1914년에 펠릭스 하우스도르프가 최초로 사용하였다.

카지미에시 쿠라토프스키1922년에 증명하였다.[1] 막스 초른1935년에 같은 정리를 "극대 원소 원리"(영어: maximum principle)라는 이름으로 발표하였고,[2]:667 이를 집합론의 공리로 차용할 것을 주장하였다.

"초른 (보조)정리"라는 이름은 1939년에 니콜라 부르바키가 《집합론》(프랑스어: Théorie des ensembles)에서 사용하였다.[3]

같이 보기

편집

각주

편집
  1. Kuratowski, Casimir (1922). “Une méthode d’élimination des nombres transfinis des raisonnements mathématiques” (PDF). 《Fundamenta Mathematicae》 (프랑스어) 3: 76–108. JFM 48.0205.04. 
  2. Zorn, Max (1935). “A remark on method in transfinite algebra”. 《Bulletin of the American Mathematical Society》 (영어) 41 (10): 667–670. doi:10.1090/S0002-9904-1935-06166-X. JFM 61.1028.01. MR 1563165. Zbl 0012.33702. 
  3. Bourbaki, Nicolas (1939). 《Éléments de mathématique. Première partie: Les structures fondamentales de l’analyse. I: Théorie des ensembles (fascicule de résultats)》. Actualités scientifiques et industrielles (프랑스어) 846. Paris: Hermann. JFM 65.1163.04. OCLC 718565706. Zbl 0026.38902. 

외부 링크

편집