뉴턴의 운동방정식이 x, y, z 좌표계에서 성립한다고 가정하면 x', y', z' 좌표계에서 아래의 식을 만족한다.
우변의 둘째, 셋째 그리고 넷째 항을 왼쪽으로 옮기면 뉴턴의 운동 방정식과 비슷한 꼴의 운동방정식이 된다.
오른쪽 둘째 항은 코리올리 힘(Coriolis Force)이라고 부른다. 그리고 오른쪽 셋째 항은 원심력(Centripetal Force)이라고 한다. 마지막 항은 가로 힘(Transverse Force)이며 회전 각속도가 일정하지 않은 경우에만 나타난다. 원심력과 코리올리 힘을 도입한다면, 회전하고 있는 좌표계에 대한 운동방정식은 고정된 좌표계에 대해서 같다. 그리고 원심력과 코리올리 힘은 실제 힘이 아니라 회전하고 있는 좌표계에서 나타나는 가상의 힘(Fictitious Force)이다.
적도에서 북풍이 부는 경우에도 바람은 코리올리 힘을 받게 된다. 코리올리 힘은 다음과 같은 공식에 의해 계산된다.
지구는 자전 축을 중심으로 의 각속도로 회전하고 있고, 바람은 북쪽으로 이동한다고 할 수 있지만 실제 지구는 둥글기 때문에 기울어져서 고위도쪽을 향하게 된다. 이때 코리올리 정리를 통해 바람이 받는 힘의 방향을 알 수 있다. 이 때의 코리올리 힘의 방향은 동쪽을 향하게 된다. 즉 운동방향에 대해 오른쪽으로 편향하게 된다는 것을 확인할 수 있다. 수식의 결과가 아니라 각운동량 보존법칙을 적용해보아도 쉽게 우측편향된다는 것을 확인할 수 있다. 적도를 중심으로 바람이 고위도 쪽으로 바람이 부는 경우 지구가 타원형이기 때문에 고위도쪽으로 이동할수록 자전축에 대해 거리가 줄어들게 된다. 이 때에도 각운동량은 보존되어야 한다. 회전축을 중심으로 거리가 줄어들었기 때문에 각속도가 그만큼 증가해야 할 것이다. 이렇게 생각한다면 고위도로 바람이 불면 불수록 반지름이 더더욱 줄어들기 때문에 상대적으로 각속도는 증가하게 된다. 그결과 바람은 우측편향하여 불게 된다.
코리올리의 힘이 적용되는 또 다른 예는 푸코의 진자이다. 푸코의 진자는 어떤 수직면에서 자유롭게 흔들리는 줄에 매단 추이다. 진자는 정확한 수직면에서 흔들리기 시작하는데, 진동하는 수직축에 대해 몇 시간의 주기 동안 천천히 옆돌기를 한다. 진자가 긴 시간의 주기동안에 자유로이 계속하여 흔들릴 수 있도록, 추는 무거운 것으로 하고 줄은 아주 길게 한다.
질량 m인 흔들이 추의 운동의 중심을 원점으로 택하고, 이때 벡터 은 진자의 작은 진동에 대해 거의 수평이다. 북반구에서
는 수직과 예각을 이룬다. 줄의 장력을 라고 쓰고, 회전좌표계에서 발생하는 원심력과 중력을 라고 생각하면 추의 운동방정식은 다음과 같이 전개 된다.
코리올리 힘에 의해 진자는 수평방향으로 일정한 각속도로 진동을 하게 된다. 그리고 을 회전축을 삼고, 로 회전하는 좌표계를 새로 도입하면 이 계에 대한 시간 도함수는 로 나타날 것이다. 그러므로 를 로 나타낸 것은 다음과 같다.
이를 추의 운동방정식에 적용하면 다음과 같은 식이 된다.
각속도로 회전을 하는 좌표계를 중심으로 나타내면 다음과 같다.
위의 식에서 오른쪽에 있는 모든 벡터는 마지막 항을 빼고는 진자가 있는 수직면에 있다. 하지만 작은 진동에 대해 이 실제로 수평이므로, 를 수평으로 만들어 마지막 항도 이 수직면에 있도록 할 수 있다.
는 돌고있는 지구의 각속도이고, 는 지구에 대해 돌고있는 좌표계의 각속도이다. 는 지구 축과 수직사이의 각이다. 수직은 방향을 따른다.
위의 식을 보면 결과적으로 지구에서 푸코의 진자는 각속도 로 옆으로 회전한다는 것을 말한다. 북반구에서 내려다 볼 때 그 회전은 시계방향이 된다.