단위원: 두 판 사이의 차이

25 바이트 추가됨 ,  8년 전
이와 같은 방식으로 삼각함수의 정의를 이용하여 단위원 위의 모든 점을 '원점으로부터의 거리(<math>r</math>)'와 '<math>x</math>축의 양의 방향과 이루는 각도(<math>\theta</math>)'로 나타내는 것을 '단위원의 삼각매개화'라 한다.
 
==단위원의단위원 위의 임의의 한 점의 유리매개화==
 
단위원 위의 임의의 한 점 <math>P</math>를 유리매개화 하기 위해, 기울기가 <math>t</math>(<math>t</math>: 임의의 실수)이고 단위원 위의 한 점인 <math>(-1,0)</math>을 지나는 직선 <math>l</math>을 생각한다. 이 경우, 직선 <math>l</math>은 단위원과 2개의 교점을 갖는다. 하나는 <math>(-1,0)</math>, 다른 하나는 유리매개화를 하려고 하는 임의의 점 <math>P</math>가 된다. 따라서 단위원의 원의 방정식과 직선 <math>l</math>의 방정식을 연립하여 점 <math>P</math>의 좌표를 찾아낸다면, 임의의 실수 <math>t</math>에 대해 원 위의 모든 점(단, <math>(-1,0)</math>은 제외)을 유리매개화 할 수 있다.
익명 사용자