전자공학자이므로 이와 관련된 수학에 관심이 많다. 따라서 생각나는데오 노트한다.

기초수학 편집

자연로그 편집

자연로그(natural logarithm)는 e를 밑으로 하는 로그를 뜻하며,  일 때,  을 자연로그라 한다.
 

양변에 자연로그를 씌우면

 
 

전자공학과 수학 편집

라플라스 변환 편집

라플라스 변환

정의 편집

함수  의 라플라스 변환은 모든 실수 t ≥ 0 에 대해, 다음과 같은 함수  로 정의된다[1].

 

여기서   를 간단히 나타낸 것이고 복소수  , σ와 ω는 실수이다.

실제 사용시에는 엄밀히 정확하지는 않지만  로 표기하기도 한다.

변환 테이블 편집

The following table provides Laplace transforms for many common functions of a single variable.[2][3] For definitions and explanations, see the Explanatory Notes at the end of the table.

Because the Laplace transform is a linear operator:

  • The Laplace transform of a sum is the sum of Laplace transforms of each term.
 
  • The Laplace transform of a multiple of a function is that multiple times the Laplace transformation of that function.
 


Function Time domain
 
Laplace s-domain
 
Region of convergence Reference
unit impulse     all s inspection
delayed impulse     time shift of
unit impulse
unit step     Re(s) > 0 integrate unit impulse
delayed unit step     Re(s) > 0 time shift of
unit step
ramp     Re(s) > 0 integrate unit
impulse twice
nth power
( for integer n )
    Re(s) > 0
(n > −1)
Integrate unit
step n times
qth power
(for complex q)
    Re(s) > 0
Re(q) > −1
[4][5]
nth root     Re(s) > 0 Set q = 1/n above.
nth power with frequency shift     Re(s) > −α Integrate unit step,
apply frequency shift
delayed nth power
with frequency shift
    Re(s) > −α Integrate unit step,
apply frequency shift,
apply time shift
exponential decay     Re(s) > −α Frequency shift of
unit step
two-sided exponential decay
(only for bilateral transform)
    −α < Re(s) < α Frequency shift of
unit step
exponential approach     Re(s) > 0 Unit step minus
exponential decay
sine     Re(s) > 0 Bracewell 1978, 227쪽
cosine     Re(s) > 0 Bracewell 1978, 227쪽
hyperbolic sine     Re(s) > |α| Williams 1973, 88쪽
hyperbolic cosine     Re(s) > |α| Williams 1973, 88쪽
exponentially decaying
sine wave
    Re(s) > −α Bracewell 1978, 227쪽
exponentially decaying
cosine wave
    Re(s) > −α Bracewell 1978, 227쪽
natural logarithm     Re(s) > 0 Williams 1973, 88쪽
Bessel function
of the first kind,
of order n
    Re(s) > 0
(n > −1)
Williams 1973, 89쪽
Error function     Re(s) > 0 Williams 1973, 89쪽
Explanatory notes:

s-도메인에서의 회로 등가모델과 임피던스(impedances) 편집

The Laplace transform is often used in circuit analysis, and simple conversions to the s-Domain of circuit elements can be made. Circuit elements can be transformed into impedances, very similar to phasor impedances.

Here is a summary of equivalents:

 
s-Domain equivalent circuits

Note that the resistor is exactly the same in the time domain and the s-Domain. The sources are put in if there are initial conditions on the circuit elements. For example, if a capacitor has an initial voltage across it, or if the inductor has an initial current through it, the sources inserted in the s-Domain account for that.

The equivalents for current and voltage sources are simply derived from the transformations in the table above.

같이 보기 편집

  • 기초수학
자연로그
  • 전자공학 관련수학
라플라스 변환


각주 편집

  1. Kreyszig, E. (2006). 《Advanced Engineering Mathematics》 9판. John Wiley & Sons. ISBN 978-0-471-72897-9. 
  2. Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010), 《Mathematical methods for physics and engineering》 3판, Cambridge University Press, 455쪽, ISBN 978-0-521-86153-3 
  3. Distefano, J. J.; Stubberud, A. R.; Williams, I. J. (1995), 《Feedback systems and control》, Schaum's outlines 2판, McGraw-Hill, 78쪽, ISBN 0-07-017052-5 
  4. Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009), 《Mathematical Handbook of Formulas and Tables》, Schaum's Outline Series 3판, McGraw-Hill, 183쪽, ISBN 978-0-07-154855-7  - provides the case for real q.
  5. http://mathworld.wolfram.com/LaplaceTransform.html - Wolfram Mathword provides case for complex q