주 메뉴 열기

중점연결정리

삼각형의 중점연결정리편집

삼각형의 두 변의 중점을 연결한 선분은 나머지 변과 평행하고, 그 길이는 나머지 변의 길이의  이다.

증명편집

 ABC와  ADE에서

 
∠A는 공통

 ABC  ADE (SAS 닮음)

∴∠ADE=∠ABC

즉, DE//BC

또,  이므로

 

편집

삼각형의 한 변의 중점을 지나서 다른 한 변에 평행한 직선은 나머지 한 변의 중점을 지난다

사다리꼴에서의 중점연결정리편집

 일 때
 

증명편집

ANBC의 연장선의 교점을 E라 할 때

 ADN와  ECN에서

DN=NC (가정)
∠AND=∠ENC (맞꼭지각)
∠ADN=∠ECN (엇각)

 ADN ≡ ECN (ASA 합동)

AN=NE, AD=CE

그러므로  ABE에서 중점연결정리에 의하여

 

 

같이 보기편집