프로트의 정리

프로트의 정리수론에서 프로트 수에 대한 소수 판별법이다.

만일 이고, 홀수 를 갖는 형태의 프로트 수일 때, 어떤 정수 에 대해서 다음과 같이 표현될 수 있다면,

소수 (이때 이 소수는 프로트 소수라고 한다)이다. 이 소수 판별법은 프로트 수에 대해서는 매우 단순하고 유용하다.

적용 예제편집

프로트 정리를 적용하면 다음과 같다:

  •  일 때,  는 3으로 나누어떨어진다. 그러므로 3은 소수이다.
  •  일 때,  는 5로 나누어떨어진다. 그러므로 5는 소수이다.
  •  일 때,  는 13으로 나누어떨어진다. 그러므로 13은 소수이다.
  •  일 때, 소수가 아니므로 9로 나누어떨어지는 수   는 존재하지 않는다.

가장 작은 프로트 소수부터 차례대로 나열하면 다음과 같다. (OEIS의 수열 A080076):

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153

2020년을 기준으로 지금까지 알려진 프로트 소수 중에서 가장 큰 수는 2016년에 발견된 10223 × 231172165 + 1이다. 이 소수는 9,383,761자리이고, 현재까지 발견된 소수들 중 메르센 소수가 아닌 소수 중에서는 가장 큰 소수이다.[1]

역사편집

농부였던 아마추어 수학자, 프랑수아 프로트 (1852년 - 1879년)는 1878년경에 이 정리를 발견했다.

같이 보기편집

각주편집

외부 링크편집