활꼴(circular segment)이란 원 위의 임의의 두 점을 이은 선분인 (chord)과 같은 두 점을 연결하는 (弧, arc)로 이루어진 도형이다. 활꼴에서 두 점을 이은 직선이 지름이면 반원이 된다. 점 A와 점B 그리고 점 X가 원 위에 놓여 있으면 원호(arc) 위에서 어떤 선이 만나느냐에 따라 활꼴 또는 부채꼴이 된다. 선분 BX 또는 선분 AB가 호 위에서 만나면 활꼴이, 원의 중심 M을 지나는 최단거리 선분 AM 또는 선분 BM을 점X와 호(arc) 위에서 연결하면 보다 큰 부채꼴 AMX 또는 보다 작은 부채꼴 BMX가 된다.

호와 현편집

 
(예시) 점BX는 직선에서 현, 곡선에서 호이며 활꼴이 된다. 또한 직경(AB)는 원 위에서 가장 큰 활꼴이다.

현과 직경과의 관계편집

 
(예시) 유클리드 기하학 원론 제3권 법칙35

 와 직경 가 수직으로 만나는 점 E에서 선분 AE와 선분EB와의 비율은 원둘레에서 호의 길이의 비율을 보여준다. 따라서 이러한 성질은 선분 AE와 선분EB와의 비율에서 역시 활꼴의 면적을 보여줄 수 있다.

한편 활꼴의 길이 선분CD와 활꼴의 높이 선분EB를 갖는 활꼴의 길이( )는 높이( )와 직경( )에서 다음의 관계가 있다.

 이다.
 이고  이면
 를 예약하고
 
 
 이고  이다.

따라서

 

따라서

 

활꼴의 면적편집

 
(예시)

반지름(r)과 호(또는 활꼴)의 둘레 길이(L) 그리고 점MBX에서 부채꼴의 면적(S)은

  이고

활꼴의 면적(A)은 부채꼴의 면적(S) 그리고 삼각형 △MBX에서

 이다.

같이 보기편집