k·p 섭동 이론

응집물질물리학에서, k·p 섭동 이론(k·p perturbation theory)은 띠구조를 다루는 섭동 이론의 하나다.

전개편집

위치 에너지   속에 있는 전자해밀토니언은 다음과 같다.

 .

전자 파동 함수  슈뢰딩거 방정식

 

을 만족한다.

위치 에너지  브라베 격자의 주기성을 지닌다. 따라서 파동 함수블로흐 파

 

로 나타내자. 여기서  브라베 격자의 주기성을 지닌다. 그렇다면 슈뢰딩거 방정식을 다음과 같이 쓸 수 있다.

 .

여기서

 

이다. 이제  을 제외한 항들  를 원래 해밀토니언  에 대한 섭동항으로 간주하여 섭동 이론을 전개할 수 있다. 이 섭동 이론을 k·p 섭동 이론이라고 한다.

기본적인 경우편집

가장 기본적인 경우로, 스핀-궤도 결합  를 무시한 경우를 생각히 보자. 만약 결정 구조가 원점 대칭을 가진다면, parity에 의해   이 성립한다. 즉, 에너지 1차 섭동은 0이다. 에너지 2차 섭동은 다음과 같다.

 

이 때, 고유함수를 1차항까지 전개하면,

 .

유효 질량의 정의는 다음과 같다.

 

이 정의를 이용해  를 이차항까지 아래와 같은 꼴로 적어 준다.

 

이 식과 앞에서 구한, 섭동에 따른 전개식을 사용하면, 다음과 같은 결과에 도달하게 된다.

 

우변의 분모가 매우 작은 경우, 유효 질량  이 실제 질량  보다 매우 작게 된다. 예를 들어, 반도체 CdxHg1−xTe ( )의 경우, 전도띠바닥 상태에서는 유효 질량이  으로 매우 작다.

스핀-궤도 결합편집

스핀-궤도 결합 효과를 고려하는 경우에는 보통 다음과 같은 역학적 운동량(mechanical momentum)  를 정의한다.

 .

그렇다면 섭동 해밀토니언  는 다음과 같다.

 

즉, 스핀-궤도 결합을 고려하려면 모든 공식에서 바른틀 운동량  를 역학적 운동량  로 치환하기만 하면 된다.

겹침이 있는 경우의 k·p 섭동 이론편집

겹침이 있는 경우 k·p 섭동 이론은 더 복잡해진다. 기본적인 방법은 겹침이 없는 경우와 같으나, 기저를 새롭게 잡아서 해밀토니언의 섭동항의 대각 성분만 살려주도록 해야 한다. 경우에 따라 그 방법이 다양하다.[1]

참고 문헌편집

  1. Kittel, C. (1987). 《Quantum Theory of Solids》 2판. ISBN 0-471-62412-8.