기본 설명 편집
변수에 대한 함수로 타원 놈은 다음과 같이 정의된다:
q
(
x
)
=
exp
[
−
π
K
(
1
−
x
2
)
K
(
x
)
−
1
]
{\displaystyle q(x)=\exp {\bigl [}-\pi \,K({\sqrt {1-x^{2}}})\,K(x)^{-1}{\bigr ]}}
그리고 제1종 완전 타원 적분은 다음과 같이 정의된다:
K
(
ε
)
=
∫
0
π
/
2
1
1
−
ε
2
sin
(
φ
)
2
d
φ
{\displaystyle K(\varepsilon )=\int _{0}^{\pi /2}{\frac {1}{\sqrt {1-\varepsilon ^{2}\sin(\varphi )^{2}}}}\,\mathrm {d} \varphi }
K
(
ε
)
=
∫
0
1
2
(
w
2
+
1
)
2
−
4
ε
2
w
2
d
w
{\displaystyle K(\varepsilon )=\int _{0}^{1}{\frac {2}{\sqrt {(w^{2}+1)^{2}-4\,\varepsilon ^{2}w^{2}}}}\,\mathrm {d} w}
두 공식은 서로 일치하며 동일한 결과를 가져온다.
다음에서 놈의 일부 기능 값이 제공된다. 다음은 렘니스케이트 값이다.
q
(
0
)
=
0
{\displaystyle q(0)=0}
q
(
1
)
=
1
{\displaystyle q(1)=1}
q
(
−
1
)
=
1
{\displaystyle q(-1)=1}
q
(
1
2
2
)
=
e
−
π
{\displaystyle q({\tfrac {1}{2}}{\sqrt {2}})={\text{e}}^{-\pi }}
q
[
(
2
−
1
)
2
]
=
e
−
2
π
{\displaystyle q[({\sqrt {2}}-1)^{2}]={\text{e}}^{-2\pi }}
q
[
2
2
4
(
2
−
1
)
]
=
exp
(
−
1
2
π
)
{\displaystyle q[2{\sqrt[{4}]{2}}({\sqrt {2}}-1)]=\exp(-{\tfrac {1}{2}}\pi )}
q
[
1
2
(
3
−
1
)
(
2
−
3
4
)
]
=
e
−
3
π
{\displaystyle q[{\tfrac {1}{2}}({\sqrt {3}}-1)({\sqrt {2}}-{\sqrt[{4}]{3}})]={\text{e}}^{-3\pi }}
q
[
1
2
(
3
−
1
)
(
2
+
3
4
)
]
=
exp
(
−
1
3
π
)
{\displaystyle q[{\tfrac {1}{2}}({\sqrt {3}}-1)({\sqrt {2}}+{\sqrt[{4}]{3}})]=\exp(-{\tfrac {1}{3}}\pi )}
q
[
1
2
(
10
−
2
2
)
(
3
−
2
5
4
)
]
=
e
−
5
π
{\displaystyle q[{\tfrac {1}{2}}({\sqrt {10}}-2{\sqrt {2}})(3-2{\sqrt[{4}]{5}})]={\text{e}}^{-5\pi }}
q
[
1
2
(
10
−
2
2
)
(
3
+
2
5
4
)
]
=
exp
(
−
1
5
π
)
{\displaystyle q[{\tfrac {1}{2}}({\sqrt {10}}-2{\sqrt {2}})(3+2{\sqrt[{4}]{5}})]=\exp(-{\tfrac {1}{5}}\pi )}
일부 비 렘니스케이트 값은 다음과 같다:
q
[
1
4
(
6
−
2
)
]
=
e
−
3
π
{\displaystyle q[{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})]={\text{e}}^{-{\sqrt {3}}\pi }}
q
[
1
4
(
6
+
2
)
]
=
exp
(
−
1
3
3
π
)
{\displaystyle q[{\tfrac {1}{4}}({\sqrt {6}}+{\sqrt {2}})]=\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi )}
q
{
sin
[
1
2
arcsin
(
5
−
2
)
]
}
=
e
−
5
π
{\displaystyle q{\bigl \{}\sin {\bigl [}{\tfrac {1}{2}}\arcsin {\bigl (}{\sqrt {5}}-2{\bigr )}{\bigr ]}{\bigr \}}={\text{e}}^{-{\sqrt {5}}\pi }}
q
{
cos
[
1
2
arcsin
(
5
−
2
)
]
}
=
exp
(
−
1
5
5
π
)
{\displaystyle q{\bigl \{}\cos {\bigl [}{\tfrac {1}{2}}\arcsin {\bigl (}{\sqrt {5}}-2{\bigr )}{\bigr ]}{\bigr \}}=\exp(-{\tfrac {1}{5}}{\sqrt {5}}\,\pi )}
q
[
1
8
(
3
2
−
14
)
]
=
e
−
7
π
{\displaystyle q[{\tfrac {1}{8}}(3{\sqrt {2}}-{\sqrt {14}})]={\text{e}}^{-{\sqrt {7}}\pi }}
q
[
1
8
(
3
2
+
14
)
]
=
exp
(
−
1
7
7
π
)
{\displaystyle q[{\tfrac {1}{8}}(3{\sqrt {2}}+{\sqrt {14}})]=\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi )}
q
[
1
16
(
22
+
3
2
)
(
1
3
6
3
+
2
11
3
−
1
3
6
3
−
2
11
3
+
1
3
11
−
1
)
4
]
=
e
−
11
π
{\displaystyle q{\bigl [}{\tfrac {1}{16}}{\bigl (}{\sqrt {22}}+3{\sqrt {2}}{\bigr )}{\bigl (}{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}+2{\sqrt {11}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}-2{\sqrt {11}}}}+{\tfrac {1}{3}}{\sqrt {11}}-1{\bigr )}^{4}{\bigr ]}={\text{e}}^{-{\sqrt {11}}\pi }}
q
[
1
16
(
22
−
3
2
)
(
1
3
6
3
+
2
11
3
−
1
3
6
3
−
2
11
3
+
1
3
11
+
1
)
4
]
=
exp
(
−
1
11
11
π
)
{\displaystyle q{\bigl [}{\tfrac {1}{16}}{\bigl (}{\sqrt {22}}-3{\sqrt {2}}{\bigr )}{\bigl (}{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}+2{\sqrt {11}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}-2{\sqrt {11}}}}+{\tfrac {1}{3}}{\sqrt {11}}+1{\bigr )}^{4}{\bigr ]}=\exp(-{\tfrac {1}{11}}{\sqrt {11}}\,\pi )}
q
{
sin
[
1
2
arcsin
(
5
13
−
18
)
]
}
=
e
−
13
π
{\displaystyle q{\bigl \{}\sin {\bigl [}{\tfrac {1}{2}}\arcsin {\bigl (}5{\sqrt {13}}-18{\bigr )}{\bigr ]}{\bigr \}}={\text{e}}^{-{\sqrt {13}}\pi }}
q
{
cos
[
1
2
arcsin
(
5
13
−
18
)
]
}
=
exp
(
−
1
13
13
π
)
{\displaystyle q{\bigl \{}\cos {\bigl [}{\tfrac {1}{2}}\arcsin {\bigl (}5{\sqrt {13}}-18{\bigr )}{\bigr ]}{\bigr \}}=\exp(-{\tfrac {1}{13}}{\sqrt {13}}\,\pi )}
q
⟨
sin
{
1
2
arcsin
[
(
1
4
17
+
1
4
−
1
4
2
17
+
2
)
6
]
}
⟩
=
e
−
17
π
{\displaystyle q{\bigl \langle }\sin {\bigl \{}{\tfrac {1}{2}}\arcsin {\bigl [}{\bigl (}{\tfrac {1}{4}}{\sqrt {17}}+{\tfrac {1}{4}}-{\tfrac {1}{4}}{\sqrt {2{\sqrt {17}}+2}}{\bigr )}^{6}{\bigr ]}{\bigr \}}{\bigr \rangle }={\text{e}}^{-{\sqrt {17}}\pi }}
q
⟨
cos
{
1
2
arcsin
[
(
1
4
17
+
1
4
−
1
4
2
17
+
2
)
6
]
}
⟩
=
exp
(
−
1
17
17
π
)
{\displaystyle q{\bigl \langle }\cos {\bigl \{}{\tfrac {1}{2}}\arcsin {\bigl [}{\bigl (}{\tfrac {1}{4}}{\sqrt {17}}+{\tfrac {1}{4}}-{\tfrac {1}{4}}{\sqrt {2{\sqrt {17}}+2}}{\bigr )}^{6}{\bigr ]}{\bigr \}}{\bigr \rangle }=\exp(-{\tfrac {1}{17}}{\sqrt {17}}\,\pi )}
q
⟨
sin
{
1
2
arcsin
[
(
37
−
6
)
3
]
}
⟩
=
e
−
37
π
{\displaystyle q{\bigl \langle }\sin {\bigl \{}{\tfrac {1}{2}}\arcsin {\bigl [}({\sqrt {37}}-6)^{3}{\bigr ]}{\bigr \}}{\bigr \rangle }={\text{e}}^{-{\sqrt {37}}\pi }}
q
⟨
cos
{
1
2
arcsin
[
(
37
−
6
)
3
]
}
⟩
=
exp
(
−
1
37
37
π
)
{\displaystyle q{\bigl \langle }\cos {\bigl \{}{\tfrac {1}{2}}\arcsin {\bigl [}({\sqrt {37}}-6)^{3}{\bigr ]}{\bigr \}}{\bigr \rangle }=\exp(-{\tfrac {1}{37}}{\sqrt {37}}\,\pi )}
다음 값은 홀수의 제곱근과 함께 Gelfold 상수의 역수의 거듭제곱으로 발생한다:
q
(
2
−
1
)
=
e
−
2
π
{\displaystyle q({\sqrt {2}}-1)={\text{e}}^{-{\sqrt {2}}\pi }}
q
(
2
2
−
2
)
=
exp
(
−
1
2
2
π
)
{\displaystyle q({\sqrt {2{\sqrt {2}}-2}})=\exp(-{\tfrac {1}{2}}{\sqrt {2}}\,\pi )}
q
[
(
2
−
3
)
(
3
−
2
)
]
=
e
−
6
π
{\displaystyle q[(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}})]={\text{e}}^{-{\sqrt {6}}\pi }}
q
[
(
2
−
3
)
(
3
+
2
)
]
=
exp
(
−
1
3
6
π
)
{\displaystyle q[(2-{\sqrt {3}})({\sqrt {3}}+{\sqrt {2}})]=\exp(-{\tfrac {1}{3}}{\sqrt {6}}\,\pi )}
q
[
(
10
−
3
)
(
2
−
1
)
2
]
=
e
−
10
π
{\displaystyle q[({\sqrt {10}}-3)({\sqrt {2}}-1)^{2}]={\text{e}}^{-{\sqrt {10}}\pi }}
q
[
(
10
−
3
)
(
2
+
1
)
2
]
=
exp
(
−
1
5
10
π
)
{\displaystyle q[({\sqrt {10}}-3)({\sqrt {2}}+1)^{2}]=\exp(-{\tfrac {1}{5}}{\sqrt {10}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
2
+
1
2
−
1
2
4
2
+
5
)
3
]
}
⟩
=
e
−
14
π
{\displaystyle q{\bigl \langle }\tan {\bigl \{}{\tfrac {1}{2}}\arctan {\bigl [}{\bigl (}{\sqrt {2}}+{\tfrac {1}{2}}-{\tfrac {1}{2}}{\sqrt {4{\sqrt {2}}+5}}{\bigr )}^{3}{\bigr ]}{\bigr \}}{\bigr \rangle }={\text{e}}^{-{\sqrt {14}}\pi }}
q
⟨
tan
{
1
2
arctan
[
(
2
+
1
2
+
1
2
4
2
+
5
)
3
]
}
⟩
=
exp
(
−
1
7
14
π
)
{\displaystyle q{\bigl \langle }\tan {\bigl \{}{\tfrac {1}{2}}\arctan {\bigl [}{\bigl (}{\sqrt {2}}+{\tfrac {1}{2}}+{\tfrac {1}{2}}{\sqrt {4{\sqrt {2}}+5}}{\bigr )}^{3}{\bigr ]}{\bigr \}}{\bigr \rangle }=\exp(-{\tfrac {1}{7}}{\sqrt {14}}\,\pi )}
q
[
(
10
−
3
11
)
(
3
11
−
7
2
)
]
=
e
−
22
π
{\displaystyle q[(10-3{\sqrt {11}})(3{\sqrt {11}}-7{\sqrt {2}})]={\text{e}}^{-{\sqrt {22}}\pi }}
q
[
(
10
−
3
11
)
(
3
11
+
7
2
)
]
=
exp
(
−
1
11
22
π
)
{\displaystyle q[(10-3{\sqrt {11}})(3{\sqrt {11}}+7{\sqrt {2}})]=\exp(-{\tfrac {1}{11}}{\sqrt {22}}\,\pi )}
q
{
(
26
+
5
)
(
2
−
1
)
2
tan
[
1
4
π
−
arctan
(
1
3
3
3
+
26
3
−
1
3
3
3
−
26
3
+
1
6
26
−
1
2
2
)
]
4
}
=
e
−
26
π
{\displaystyle q{\bigl \{}({\sqrt {26}}+5)({\sqrt {2}}-1)^{2}\tan {\bigl [}{\tfrac {1}{4}}\pi -\arctan({\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}+{\sqrt {26}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}-{\sqrt {26}}}}+{\tfrac {1}{6}}{\sqrt {26}}-{\tfrac {1}{2}}{\sqrt {2}}){\bigr ]}^{4}{\bigr \}}={\text{e}}^{-{\sqrt {26}}\pi }}
q
{
(
26
+
5
)
(
2
+
1
)
2
tan
[
arctan
(
1
3
3
3
+
26
3
−
1
3
3
3
−
26
3
+
1
6
26
+
1
2
2
)
−
1
4
π
]
4
}
=
exp
(
−
1
13
26
π
)
{\displaystyle q{\bigl \{}({\sqrt {26}}+5)({\sqrt {2}}+1)^{2}\tan {\bigl [}\arctan({\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}+{\sqrt {26}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}-{\sqrt {26}}}}+{\tfrac {1}{6}}{\sqrt {26}}+{\tfrac {1}{2}}{\sqrt {2}})-{\tfrac {1}{4}}\pi {\bigr ]}^{4}{\bigr \}}=\exp(-{\tfrac {1}{13}}{\sqrt {26}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
1
4
17
+
3
4
−
1
4
6
17
+
10
)
6
]
}
⟩
=
e
−
34
π
{\displaystyle q{\bigl \langle }\tan {\bigl \{}{\tfrac {1}{2}}\arctan {\bigl [}{\bigl (}{\tfrac {1}{4}}{\sqrt {17}}+{\tfrac {3}{4}}-{\tfrac {1}{4}}{\sqrt {6{\sqrt {17}}+10}}{\bigr )}^{6}{\bigr ]}{\bigr \}}{\bigr \rangle }={\text{e}}^{-{\sqrt {34}}\pi }}
q
⟨
tan
{
1
2
arctan
[
(
1
4
17
+
3
4
+
1
4
6
17
+
10
)
6
]
}
⟩
=
exp
(
−
1
17
34
π
)
{\displaystyle q{\bigl \langle }\tan {\bigl \{}{\tfrac {1}{2}}\arctan {\bigl [}{\bigl (}{\tfrac {1}{4}}{\sqrt {17}}+{\tfrac {3}{4}}+{\tfrac {1}{4}}{\sqrt {6{\sqrt {17}}+10}}{\bigr )}^{6}{\bigr ]}{\bigr \}}{\bigr \rangle }=\exp(-{\tfrac {1}{17}}{\sqrt {34}}\,\pi )}
q
[
(
13
58
−
99
)
(
2
−
1
)
6
]
=
e
−
58
π
{\displaystyle q[(13{\sqrt {58}}-99)({\sqrt {2}}-1)^{6}]={\text{e}}^{-{\sqrt {58}}\pi }}
q
[
(
13
58
−
99
)
(
2
+
1
)
6
]
=
exp
(
−
1
29
58
π
)
{\displaystyle q[(13{\sqrt {58}}-99)({\sqrt {2}}+1)^{6}]=\exp(-{\tfrac {1}{29}}{\sqrt {58}}\,\pi )}
놈를 제곱하면 다음 값이 된다:
q
{
tan
[
1
2
arcsin
(
2
−
1
)
]
2
}
=
e
−
2
2
π
{\displaystyle q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arcsin {\bigl (}{\sqrt {2}}-1{\bigr )}{\bigr ]}^{2}{\bigr \}}={\text{e}}^{-2{\sqrt {2}}\pi }}
q
[
(
3
−
2
)
2
(
2
−
1
)
2
]
=
e
−
2
3
π
{\displaystyle q[({\sqrt {3}}-{\sqrt {2}})^{2}({\sqrt {2}}-1)^{2}]={\text{e}}^{-2{\sqrt {3}}\pi }}
q
[
(
3
−
2
)
2
(
2
+
1
)
2
]
=
exp
(
−
2
3
3
π
)
{\displaystyle q[({\sqrt {3}}-{\sqrt {2}})^{2}({\sqrt {2}}+1)^{2}]=\exp(-{\tfrac {2}{3}}{\sqrt {3}}\,\pi )}
q
{
tan
[
1
4
arcsin
(
5
−
2
)
]
2
}
=
e
−
2
5
π
{\displaystyle q{\bigl \{}\tan {\bigl [}{\tfrac {1}{4}}\arcsin {\bigl (}{\sqrt {5}}-2{\bigr )}{\bigr ]}^{2}{\bigr \}}={\text{e}}^{-2{\sqrt {5}}\pi }}
q
{
tan
[
1
4
π
−
1
4
arcsin
(
5
−
2
)
]
2
}
=
exp
(
−
2
5
5
π
)
{\displaystyle q{\bigl \{}\tan {\bigl [}{\tfrac {1}{4}}\pi -{\tfrac {1}{4}}\arcsin {\bigl (}{\sqrt {5}}-2{\bigr )}{\bigr ]}^{2}{\bigr \}}=\exp(-{\tfrac {2}{5}}{\sqrt {5}}\,\pi )}
q
[
(
2
−
1
)
4
(
2
2
−
7
)
2
]
=
e
−
2
7
π
{\displaystyle q[({\sqrt {2}}-1)^{4}(2{\sqrt {2}}-{\sqrt {7}})^{2}]={\text{e}}^{-2{\sqrt {7}}\pi }}
q
[
(
2
−
1
)
4
(
2
2
+
7
)
2
]
=
exp
(
−
2
7
7
π
)
{\displaystyle q[({\sqrt {2}}-1)^{4}(2{\sqrt {2}}+{\sqrt {7}})^{2}]=\exp(-{\tfrac {2}{7}}{\sqrt {7}}\,\pi )}
q
{
tan
[
1
4
arcsin
(
5
13
−
18
)
]
2
}
=
e
−
2
13
π
{\displaystyle q{\bigl \{}\tan {\bigl [}{\tfrac {1}{4}}\arcsin {\bigl (}5{\sqrt {13}}-18{\bigr )}{\bigr ]}^{2}{\bigr \}}={\text{e}}^{-2{\sqrt {13}}\pi }}
q
{
tan
[
1
4
π
−
1
4
arcsin
(
5
13
−
18
)
]
2
}
=
exp
(
−
2
13
13
π
)
{\displaystyle q{\bigl \{}\tan {\bigl [}{\tfrac {1}{4}}\pi -{\tfrac {1}{4}}\arcsin {\bigl (}5{\sqrt {13}}-18{\bigr )}{\bigr ]}^{2}{\bigr \}}=\exp(-{\tfrac {2}{13}}{\sqrt {13}}\,\pi )}
가치의 특정 사중주가 아래에 나열되어 있다:
q
⟨
tan
{
1
2
arctan
[
(
10
−
3
)
2
(
5
−
2
)
2
]
}
⟩
=
exp
(
−
30
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {10}}-3)^{2}({\sqrt {5}}-2)^{2}]\}{\bigr \rangle }=\exp(-{\sqrt {30}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
10
−
3
)
2
(
5
+
2
)
2
]
}
⟩
=
exp
(
−
1
3
30
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {10}}-3)^{2}({\sqrt {5}}+2)^{2}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{3}}{\sqrt {30}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
10
+
3
)
2
(
5
−
2
)
2
]
}
⟩
=
exp
(
−
1
5
30
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {10}}+3)^{2}({\sqrt {5}}-2)^{2}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{5}}{\sqrt {30}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
10
+
3
)
2
(
5
+
2
)
2
]
}
⟩
=
exp
(
−
1
15
30
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {10}}+3)^{2}({\sqrt {5}}+2)^{2}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{15}}{\sqrt {30}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
2
7
−
3
3
)
2
(
2
2
−
7
)
2
]
}
⟩
=
exp
(
−
42
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[(2{\sqrt {7}}-3{\sqrt {3}})^{2}(2{\sqrt {2}}-{\sqrt {7}})^{2}]\}{\bigr \rangle }=\exp(-{\sqrt {42}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
2
7
−
3
3
)
2
(
2
2
+
7
)
2
]
}
⟩
=
exp
(
−
1
3
42
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[(2{\sqrt {7}}-3{\sqrt {3}})^{2}(2{\sqrt {2}}+{\sqrt {7}})^{2}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{3}}{\sqrt {42}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
2
7
+
3
3
)
2
(
2
2
−
7
)
2
]
}
⟩
=
exp
(
−
1
7
42
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[(2{\sqrt {7}}+3{\sqrt {3}})^{2}(2{\sqrt {2}}-{\sqrt {7}})^{2}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{7}}{\sqrt {42}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
2
7
+
3
3
)
2
(
2
2
+
7
)
2
]
}
⟩
=
exp
(
−
1
21
42
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[(2{\sqrt {7}}+3{\sqrt {3}})^{2}(2{\sqrt {2}}+{\sqrt {7}})^{2}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{21}}{\sqrt {42}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
5
−
2
)
4
(
2
−
1
)
6
]
}
⟩
=
exp
(
−
70
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {5}}-2)^{4}({\sqrt {2}}-1)^{6}]\}{\bigr \rangle }=\exp(-{\sqrt {70}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
5
−
2
)
4
(
2
+
1
)
6
]
}
⟩
=
exp
(
−
1
5
70
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {5}}-2)^{4}({\sqrt {2}}+1)^{6}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{5}}{\sqrt {70}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
5
+
2
)
4
(
2
−
1
)
6
]
}
⟩
=
exp
(
−
1
7
70
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {5}}+2)^{4}({\sqrt {2}}-1)^{6}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{7}}{\sqrt {70}}\,\pi )}
q
⟨
tan
{
1
2
arctan
[
(
5
+
2
)
4
(
2
+
1
)
6
]
}
⟩
=
exp
(
−
1
35
70
π
)
{\displaystyle q{\bigl \langle }\tan\{{\tfrac {1}{2}}\arctan[({\sqrt {5}}+2)^{4}({\sqrt {2}}+1)^{6}]\}{\bigr \rangle }=\exp(-{\tfrac {1}{35}}{\sqrt {70}}\,\pi )}
지수 정리 편집
타원 놈 함수는 다음과 같이 파생된다:
d
d
x
q
(
x
)
=
π
2
2
x
(
1
−
x
2
)
K
(
x
)
2
q
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}q(x)={\frac {\pi ^{2}}{2x(1-x^{2})K(x)^{2}}}q(x)}
2차 도함수는 다음과 같다:
d
2
d
x
2
q
(
x
)
=
π
4
+
2
π
2
(
1
+
x
2
)
K
(
x
)
2
−
4
π
2
K
(
x
)
E
(
x
)
4
x
2
(
1
−
x
2
)
2
K
(
x
)
4
q
(
x
)
{\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}q(x)={\frac {\pi ^{4}+2\pi ^{2}(1+x^{2})K(x)^{2}-4\pi ^{2}K(x)E(x)}{4x^{2}(1-x^{2})^{2}K(x)^{4}}}q(x)}
그리고 3차 도함수는 다음과 같은 형식을 취한다:
d
3
d
x
3
q
(
x
)
=
π
6
+
6
π
4
(
1
+
x
2
)
K
(
x
)
2
+
8
π
2
(
1
+
x
2
)
2
K
(
x
)
4
+
12
π
2
K
(
x
)
E
(
x
)
[
−
π
2
−
2
(
1
+
x
2
)
K
(
x
)
2
+
2
K
(
x
)
E
(
x
)
]
8
x
3
(
1
−
x
2
)
3
K
(
x
)
6
q
(
x
)
{\displaystyle {\frac {\mathrm {d} ^{3}}{\mathrm {d} x^{3}}}q(x)={\frac {\pi ^{6}+6\pi ^{4}(1+x^{2})K(x)^{2}+8\pi ^{2}(1+x^{2})^{2}K(x)^{4}+12\pi ^{2}K(x)E(x)[-\pi ^{2}-2(1+x^{2})K(x)^{2}+2K(x)E(x)]}{8x^{3}(1-x^{2})^{3}K(x)^{6}}}q(x)}
두 번째 종류의 완전 타원 적분은 다음과 같이 정의된다:
E
(
ε
)
=
∫
0
π
/
2
1
−
ε
2
sin
(
φ
)
2
d
φ
{\displaystyle E(\varepsilon )=\int _{0}^{\pi /2}{\sqrt {1-\varepsilon ^{2}\sin(\varphi )^{2}}}\mathrm {d} \varphi }
E
(
ε
)
=
2
∫
0
1
(
w
2
+
1
)
2
−
4
ε
2
w
2
(
w
2
+
1
)
2
d
w
{\displaystyle E(\varepsilon )=2\int _{0}^{1}{\frac {\sqrt {(w^{2}+1)^{2}-4\,\varepsilon ^{2}w^{2}}}{(w^{2}+1)^{2}}}\mathrm {d} w}
두 공식은 서로 일치하며 동일한 결과를 가져온다.
제2종 완전 타원 적분을 지우면 다음과 같은 결과를 얻을 수 있다:
3
[
d
2
d
x
2
q
(
x
)
]
2
−
2
[
d
d
x
q
(
x
)
]
[
d
3
d
x
3
q
(
x
)
]
=
π
8
−
4
π
4
(
1
+
x
2
)
2
K
(
x
)
4
16
x
4
(
1
−
x
2
)
4
K
(
x
)
8
q
(
x
)
2
{\displaystyle 3{\biggl [}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}q(x){\biggr ]}^{2}-2{\biggl [}{\frac {\mathrm {d} }{\mathrm {d} x}}q(x){\biggr ]}{\biggl [}{\frac {\mathrm {d} ^{3}}{\mathrm {d} x^{3}}}q(x){\biggr ]}={\frac {\pi ^{8}-4\pi ^{4}(1+x^{2})^{2}K(x)^{4}}{16x^{4}(1-x^{2})^{4}K(x)^{8}}}q(x)^{2}}
따라서 이 3차 미분방정식은 유효하다:
x
2
(
1
−
x
2
)
2
[
2
q
(
x
)
2
q
′
(
x
)
q
‴
(
x
)
−
3
q
(
x
)
2
q
″
(
x
)
2
+
q
′
(
x
)
4
]
=
(
1
+
x
2
)
2
q
(
x
)
2
q
′
(
x
)
2
{\displaystyle x^{2}(1-x^{2})^{2}[2q(x)^{2}q'(x)q'''(x)-3q(x)^{2}q''(x)^{2}+q'(x)^{4}]=(1+x^{2})^{2}q(x)^{2}q'(x)^{2}}
무한 합과 무한 곱 편집
테타 함수 편집
오차 방정식 편집
Abel-Ruffini 정리에 따르면 5차 방정식의 일반적인 경우는 기본적으로 풀 수 없다. 그러나 타원 명사와 세타 함수의 조합으로 모든 오차 방정식 을 풀 수 있다. 다음의 브링-제라드 정규형의 5차 다항식에 대해 언급된 타원 함수가 있는 실제 솔루션이 이제 표현된다:
x
5
+
5
x
=
4
c
{\displaystyle x^{5}+5\,x=4\,c}
Q
=
q
[
(
2
c
2
+
2
+
2
c
4
+
1
)
−
1
/
2
(
c
4
+
1
+
1
+
c
)
]
{\displaystyle Q=q{\bigl [}{\bigl (}2\,c^{2}+2+2{\sqrt {c^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {c^{4}+1}}+1}}+c{\bigr )}{\bigr ]}}
x
=
[
ϑ
00
(
Q
1
/
5
)
2
−
5
ϑ
00
(
Q
5
)
2
]
ϑ
00
(
Q
1
/
5
)
2
+
5
ϑ
00
(
Q
5
)
2
−
4
ϑ
00
(
Q
)
2
−
2
ϑ
00
(
Q
1
/
5
)
ϑ
00
(
Q
5
)
4
ϑ
10
(
Q
)
ϑ
01
(
Q
)
ϑ
00
(
Q
)
{\displaystyle x={\frac {{\bigl [}\vartheta _{00}(Q^{1/5})^{2}-5\,\vartheta _{00}(Q^{5})^{2}{\bigr ]}{\sqrt {\vartheta _{00}(Q^{1/5})^{2}+5\,\vartheta _{00}(Q^{5})^{2}-4\,\vartheta _{00}(Q)^{2}-2\,\vartheta _{00}(Q^{1/5})\,\vartheta _{00}(Q^{5})}}}{4\,\vartheta _{10}(Q)\,\vartheta _{01}(Q)\,\vartheta _{00}(Q)}}}
기본 함수로 풀 수 있는 방정식의 예:
첫 번째 계산 예:
x
5
+
5
x
=
2
3
{\displaystyle x^{5}+5\,x=2{\sqrt {3}}}
Q
=
q
[
(
2
c
2
+
2
+
2
c
4
+
1
)
−
1
/
2
(
c
4
+
1
+
1
+
c
)
]
(
c
=
1
2
3
)
=
exp
(
−
1
3
3
π
)
{\displaystyle Q=q{\bigl [}{\bigl (}2\,c^{2}+2+2{\sqrt {c^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {c^{4}+1}}+1}}+c{\bigr )}{\bigr ]}(c={\tfrac {1}{2}}{\sqrt {3}})=\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi )}
x
=
ϑ
00
[
exp
(
−
1
15
3
π
)
]
2
−
5
ϑ
00
[
exp
(
−
5
3
3
π
)
]
2
4
ϑ
10
[
exp
(
−
1
3
3
π
)
]
ϑ
01
[
exp
(
−
1
3
3
π
)
]
ϑ
00
[
exp
(
−
1
3
3
π
)
]
×
{\displaystyle {\color {JungleGreen}x={\frac {\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{15}}{\sqrt {3}}\,\pi ){\bigr ]}^{2}-5\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{3}}{\sqrt {3}}\,\pi ){\bigr ]}^{2}}{4\,\vartheta _{10}{\bigl [}\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi ){\bigr ]}\,\vartheta _{01}{\bigl [}\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi ){\bigr ]}\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi ){\bigr ]}}}\times }}
×
ϑ
00
[
exp
(
−
1
15
3
π
)
]
2
+
5
ϑ
00
[
exp
(
−
5
3
3
π
)
]
2
−
4
ϑ
00
[
exp
(
−
1
3
3
π
)
]
2
−
2
ϑ
00
[
exp
(
−
1
15
3
π
)
]
ϑ
00
[
exp
(
−
5
3
3
π
)
]
{\displaystyle {\color {JungleGreen}\times {\sqrt {\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{15}}{\sqrt {3}}\,\pi ){\bigr ]}^{2}+5\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{3}}{\sqrt {3}}\,\pi ){\bigr ]}^{2}-4\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi ){\bigr ]}^{2}-2\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{15}}{\sqrt {3}}\,\pi ){\bigr ]}\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{3}}{\sqrt {3}}\,\pi ){\bigr ]}}}}}
ϑ
00
[
exp
(
−
1
15
3
π
)
]
=
[
4
3
sin
(
1
5
π
)
10
3
+
1
80
6
+
1
3
cot
(
1
10
π
)
]
ϑ
00
[
exp
(
−
1
3
3
π
)
]
{\displaystyle \vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{15}}{\sqrt {3}}\,\pi ){\bigr ]}={\biggl [}{\frac {4}{3}}\sin {\bigl (}{\tfrac {1}{5}}\pi {\bigr )}{\frac {{\sqrt[{3}]{10}}+1}{\sqrt[{6}]{80}}}+{\frac {1}{3}}\cot({\tfrac {1}{10}}\pi ){\biggr ]}\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi ){\bigr ]}}
5
ϑ
00
[
exp
(
−
5
3
3
π
)
]
=
[
4
3
cos
(
1
10
π
)
10
3
+
1
80
6
−
1
3
tan
(
1
5
π
)
]
ϑ
00
[
exp
(
−
1
3
3
π
)
]
{\displaystyle {\sqrt {5}}\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{3}}{\sqrt {3}}\,\pi ){\bigr ]}={\biggl [}{\frac {4}{3}}\cos {\bigl (}{\tfrac {1}{10}}\pi {\bigr )}{\frac {{\sqrt[{3}]{10}}+1}{\sqrt[{6}]{80}}}-{\frac {1}{3}}\tan({\tfrac {1}{5}}\pi ){\biggr ]}\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi ){\bigr ]}}
x
=
1
3
3
(
10
3
−
1
)
{\displaystyle {\color {ForestGreen}x={\tfrac {1}{3}}{\sqrt {3}}\,({\sqrt[{3}]{10}}-1)}}
두 번째 계산 예:
x
5
+
5
x
=
3
7
{\displaystyle x^{5}+5\,x=3{\sqrt {7}}}
Q
=
q
[
(
2
c
2
+
2
+
2
c
4
+
1
)
−
1
/
2
(
c
4
+
1
+
1
+
c
)
]
(
c
=
3
4
7
)
=
exp
(
−
1
7
7
π
)
{\displaystyle Q=q{\bigl [}{\bigl (}2\,c^{2}+2+2{\sqrt {c^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {c^{4}+1}}+1}}+c{\bigr )}{\bigr ]}(c={\tfrac {3}{4}}{\sqrt {7}})=\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi )}
x
=
ϑ
00
[
exp
(
−
1
35
7
π
)
]
2
−
5
ϑ
00
[
exp
(
−
5
7
7
π
)
]
2
4
ϑ
10
[
exp
(
−
1
7
7
π
)
]
ϑ
01
[
exp
(
−
1
7
7
π
)
]
ϑ
00
[
exp
(
−
1
7
7
π
)
]
×
{\displaystyle {\color {JungleGreen}x={\frac {\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{35}}{\sqrt {7}}\,\pi ){\bigr ]}^{2}-5\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{7}}{\sqrt {7}}\,\pi ){\bigr ]}^{2}}{4\,\vartheta _{10}{\bigl [}\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi ){\bigr ]}\,\vartheta _{01}{\bigl [}\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi ){\bigr ]}\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi ){\bigr ]}}}\times }}
×
ϑ
00
[
exp
(
−
1
35
7
π
)
]
2
+
5
ϑ
00
[
exp
(
−
5
7
7
π
)
]
2
−
4
ϑ
00
[
exp
(
−
1
7
7
π
)
]
2
−
2
ϑ
00
[
exp
(
−
1
35
7
π
)
]
ϑ
00
[
exp
(
−
5
7
7
π
)
]
{\displaystyle {\color {JungleGreen}\times {\sqrt {\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{35}}{\sqrt {7}}\,\pi ){\bigr ]}^{2}+5\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{7}}{\sqrt {7}}\,\pi ){\bigr ]}^{2}-4\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi ){\bigr ]}^{2}-2\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{35}}{\sqrt {7}}\,\pi ){\bigr ]}\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{7}}{\sqrt {7}}\,\pi ){\bigr ]}}}}}
ϑ
00
[
exp
(
−
1
35
7
π
)
]
=
4
3
3
cos
(
1
10
π
)
cosh
[
1
3
artanh
(
1
9
21
)
]
ϑ
00
[
exp
(
−
1
7
7
π
)
]
{\displaystyle \vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{35}}{\sqrt {7}}\,\pi ){\bigr ]}={\tfrac {4}{3}}{\sqrt {3}}\cos({\tfrac {1}{10}}\pi )\cosh {\bigl [}{\tfrac {1}{3}}{\text{artanh}}({\tfrac {1}{9}}{\sqrt {21}}){\bigr ]}\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi ){\bigr ]}}
5
ϑ
00
[
exp
(
−
5
7
7
π
)
]
=
4
3
3
sin
(
1
5
π
)
cosh
[
1
3
artanh
(
1
9
21
)
]
ϑ
00
[
exp
(
−
1
7
7
π
)
]
{\displaystyle {\sqrt {5}}\,\vartheta _{00}{\bigl [}\exp(-{\tfrac {5}{7}}{\sqrt {7}}\,\pi ){\bigr ]}={\tfrac {4}{3}}{\sqrt {3}}\sin({\tfrac {1}{5}}\pi )\cosh {\bigl [}{\tfrac {1}{3}}{\text{artanh}}({\tfrac {1}{9}}{\sqrt {21}}){\bigr ]}\vartheta _{00}{\bigl [}\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi ){\bigr ]}}
x
=
1
2
7
−
1
2
3
tanh
[
1
3
artanh
(
1
9
21
)
]
{\displaystyle {\color {ForestGreen}x={\tfrac {1}{2}}{\sqrt {7}}-{\tfrac {1}{2}}{\sqrt {3}}\tanh {\bigl [}{\tfrac {1}{3}}{\text{artanh}}({\tfrac {1}{9}}{\sqrt {21}}){\bigr ]}}}
타원 함수로만 풀 수 있는 계산 예:
x
5
+
5
x
=
2
2
4
{\displaystyle x^{5}+5\,x=2{\sqrt[{4}]{2}}}
Q
=
q
[
(
2
c
2
+
2
+
2
c
4
+
1
)
−
1
/
2
(
c
4
+
1
+
1
+
c
)
]
(
c
=
2
−
3
/
4
)
=
q
[
cos
(
1
8
π
)
]
{\displaystyle Q=q{\bigl [}{\bigl (}2\,c^{2}+2+2{\sqrt {c^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {c^{4}+1}}+1}}+c{\bigr )}{\bigr ]}(c=2^{-3/4})=q{\bigl [}\cos {\bigl (}{\tfrac {1}{8}}\pi {\bigr )}{\bigr ]}}
Q
≈
0.11785793531185771914155254110648923544545944879394196130445
{\displaystyle Q\approx 0.11785793531185771914155254110648923544545944879394196130445}
x
=
ϑ
00
{
q
[
cos
(
1
8
π
)
]
1
/
5
}
2
−
5
ϑ
00
{
q
[
cos
(
1
8
π
)
]
5
}
2
4
ϑ
10
{
q
[
cos
(
1
8
π
)
]
}
ϑ
01
{
q
[
cos
(
1
8
π
)
]
}
ϑ
00
{
q
[
cos
(
1
8
π
)
]
}
×
{\displaystyle x={\frac {\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}^{1/5}{\bigr \}}^{2}-5\,\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}^{5}{\bigr \}}^{2}}{4\,\vartheta _{10}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}{\bigr \}}\,\vartheta _{01}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}{\bigr \}}\,\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}{\bigr \}}}}\times }
×
ϑ
00
{
q
[
cos
(
1
8
π
)
]
1
/
5
}
2
+
5
ϑ
00
{
q
[
cos
(
1
8
π
)
]
5
}
2
−
4
ϑ
00
{
q
[
cos
(
1
8
π
)
]
}
2
−
2
ϑ
00
{
q
[
cos
(
1
8
π
)
]
1
/
5
}
ϑ
00
{
q
[
cos
(
1
8
π
)
]
5
}
{\displaystyle \times {\sqrt {\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}^{1/5}{\bigr \}}^{2}+5\,\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}^{5}{\bigr \}}^{2}-4\,\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}{\bigr \}}^{2}-2\,\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}^{1/5}{\bigr \}}\,\vartheta _{00}{\bigl \{}q{\bigl [}\cos({\tfrac {1}{8}}\pi ){\bigr ]}^{5}{\bigr \}}}}}
x
≈
0.4710447387949811740242434591671230417409496435087081512857
{\displaystyle x\approx 0.4710447387949811740242434591671230417409496435087081512857}
이제 솔루션이 타원 함수의 도움으로만 표현될 수 있는 두 번째 예가 표시된다:
x
5
+
5
x
=
4
{\displaystyle x^{5}+5\,x=4}
Q
=
q
[
(
2
c
2
+
2
+
2
c
4
+
1
)
−
1
/
2
(
c
4
+
1
+
1
+
c
)
]
(
c
=
1
)
=
q
[
2
4
2
+
sin
(
π
8
)
]
{\displaystyle Q=q{\bigl [}{\bigl (}2c^{2}+2+2{\sqrt {c^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {c^{4}+1}}+1}}+c{\bigr )}{\bigr ]}{\bigl (}c=1{\bigr )}=q{\bigl [}{\frac {\sqrt[{4}]{2}}{2}}+\sin({\frac {\pi }{8}}{\bigr )}{\bigr ]}}
Q
≈
0.18520287008030014142515182307361246060360377625
{\displaystyle Q\approx 0.18520287008030014142515182307361246060360377625}
x
=
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
1
/
5
}
2
−
5
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
5
}
2
4
ϑ
10
{
q
[
2
4
2
+
sin
(
π
8
)
]
}
ϑ
01
{
q
[
2
4
2
+
sin
(
π
8
)
]
}
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
}
×
{\displaystyle x={\frac {\vartheta _{00}\{q{\bigl [}{\frac {\sqrt[{4}]{2}}{2}}+\sin({\frac {\pi }{8}}){\bigr ]}^{1/5}\}^{2}-5\,\vartheta _{00}\{q{\bigl [}{\frac {\sqrt[{4}]{2}}{2}}+\sin({\frac {\pi }{8}}){\bigr ]}^{5}\}^{2}}{4\,\vartheta _{10}\{q{\bigl [}{\frac {\sqrt[{4}]{2}}{2}}+\sin({\frac {\pi }{8}}){\bigr ]}\}\,\vartheta _{01}\{q{\bigl [}{\frac {\sqrt[{4}]{2}}{2}}+\sin({\frac {\pi }{8}}){\bigr ]}\}\,\vartheta _{00}\{q{\bigl [}{\frac {\sqrt[{4}]{2}}{2}}+\sin({\frac {\pi }{8}}){\bigr ]}\}}}\times }
×
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
1
/
5
}
2
+
5
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
5
}
2
−
4
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
}
2
−
2
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
1
/
5
}
ϑ
00
{
q
[
2
4
2
+
sin
(
π
8
)
]
5
}
{\displaystyle \times {\sqrt {\vartheta _{00}\{q{\bigl [}{\tfrac {\sqrt[{4}]{2}}{2}}+\sin({\tfrac {\pi }{8}}){\bigr ]}^{1/5}\}^{2}+5\vartheta _{00}\{q{\bigl [}{\tfrac {\sqrt[{4}]{2}}{2}}+\sin({\tfrac {\pi }{8}}){\bigr ]}^{5}\}^{2}-4\vartheta _{00}\{q{\bigl [}{\tfrac {\sqrt[{4}]{2}}{2}}+\sin({\tfrac {\pi }{8}}){\bigr ]}\}^{2}-2\vartheta _{00}\{q{\bigl [}{\tfrac {\sqrt[{4}]{2}}{2}}+\sin({\tfrac {\pi }{8}}){\bigr ]}^{1/5}\}\,\vartheta _{00}\{q{\bigl [}{\tfrac {\sqrt[{4}]{2}}{2}}+\sin({\tfrac {\pi }{8}}){\bigr ]}^{5}\}}}}
x
≈
0.75192639869405948026865366345020738740978383913
{\displaystyle x\approx 0.75192639869405948026865366345020738740978383913}
같이 보기 편집
Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions , (1964) Dover Publications, New York. OCLC 1097832 . See sections 16.27.4 and 17.3.17. 1972 edition: ISBN 0-486-61272-4
Tom M. Apostol , Modular Functions and Dirichlet Series in Number Theory, Second Edition (1990), Springer, New York ISBN 0-387-97127-0
Folkmar Bornemann, Dirk Laurie, Stan Wagon and Jörg Waldvogel, Vom Lösen numerischer Probleme , page 275
Edmund Taylor Whittaker and George Neville Watson : A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990. page 469–470.
Toshio Fukushima: Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions . 2012, National Astronomical Observatory of Japan (国立天文台)
Lowan, Blanch and Horenstein: On the Inversion of the q-Series Associated with Jacobian Elliptic Functions . Bull. Amer. Math. Soc. 48, 1942
H. Ferguson, D. E. Nielsen, G. Cook: A partition formula for the integer coefficients of the theta function nome . Mathematics of computation, Volume 29, number 131, Juli 1975
J. D. Fenton and R. S. Gardiner-Garden: Rapidly-convergent methods for evaluating elliptic integrals and theta and elliptic functions . J. Austral. Math. Soc. (Series B) 24, 1982, page 57
Charles Hermite: Sur la résolution de l'Équation du cinquiéme degré Comptes rendus . Acad. Sci. Paris, Nr. 11, 1858
Nikolaos Bagis: On the solution of the general quintic using the Rogers-Ramanujan continued fraction . Pella, Makedonien, Griechenland, 2015
Nikolaos Bagis: Solution of Polynomial Equations with Nested Radicals . Pella, Makedonien, Griechenland, 2020
Viktor Prasolov (Прасолов) und Yuri Solovyev (Соловьёв): Elliptic Functions and Elliptic Integrals . Volume 170, Rhode Island, 1991. pages 149 – 159
Sun Zhi-Hong: New congruences involving Apery-like numbers . Huaiyin Normal University, Huaian (淮安), China, 2020. page 2
Robert Fricke: Die elliptischen Funktionen und ihre Anwendungen: Dritter Teil . Springer-Verlag Berlin Heidelberg, 2012. ISBN 978-3-642-20953-6 , ISBN 978-3-642-20954-3 (eBook)
Adolf Kneser: Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen . J. reine u. angew. Math. 157, 1927. pages 209 – 218
G. P. Young: Solution of Solvable Irreducible Quintic Equations, Without the Aid of a Resolvent Sextic . In: Amer. J. Math. Band 7, pages 170–177, 1885.
C. Runge: Über die auflösbaren Gleichungen von der Form x 5 + u x + v = 0 {\displaystyle x^{5}+ux+v=0} x^{5}+ux+v=0 . In: Acta Math. Band 7, pages 173–186, 1885, doi:10.1007/BF02402200.
Edward Neuman: Two-sided inequalitites for the lemniscate functions. Volume 1, Southern Illinois University Carbondale , USA, 2014.
Ji-en Deng und Chao-ping Chen: Sharp Shafer-Fink type inequalities for Gauss lemniscate functions. Universität Henan (河南大学), China, 2014.
Jun-Ling Sun und Chao-ping Chen: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions. Universität Henan, China, 2016.
Minjie Wei, Yue He and Gendi Wang: Shafer–Fink type inequalities for arc lemniscate functions . Zhejiang Sci-Tech University, Hangzhou, China, 2019