정부호 행렬

(양의 정부호 행렬에서 넘어옴)

정부호 행렬(定符號行列, 영어: definite matrix) 또는 정치 행렬(定置行列)은 에르미트 행렬의 일종으로, 특정한 성질을 가지는 행렬에 대해 양수/음수와 같이 부호를 정의하는 것으로 생각할 수 있다.

정의편집

에르미트 행렬고윳값은 항상 실수다. 에르미트 행렬  은 그 고윳값의 부호에 따라서 다음과 같이 분류한다.[1]

  • 모든 고윳값이 음수가 아닌 경우 (즉, 0이 아닌 모든 벡터  에 대해  인 경우)  양의 준정부호 행렬(陽-準定符號行列, 영어: positive semi-definite matrix)이다.
  • 모든 고윳값이 양수인 경우 (즉, 0이 아닌 모든 벡터  에 대해  인 경우)  양의 정부호 행렬(陽-定符號行列, 영어: positive definite matrix)이다.
  • 모든 고윳값이 양수가 아닌 경우 (즉, 0이 아닌 모든 벡터  에 대해  인 경우)  음의 준정부호 행렬(陰-準定符號行列, 영어: negative semi-definite matrix)이다.
  • 모든 고윳값이 음수인 경우 (즉, 0이 아닌 모든 벡터  에 대해  인 경우)  음의 정부호 행렬(陰-定符號行列, 영어: negative definite matrix)이다.
  • 양의 준정부호 또는 음의 준정부호가 아닌 경우 (즉, 양수 및 음수 고윳값을 둘 다 가진 경우)  부정부호 행렬(不定符號行列, 영어: indefinite matrix)이다.

실수체에서 정의하는 경우, 에르미트 행렬   대신 대칭행렬  , 켤레전치  대신 전치  를 사용한다.

비(非)에르미트 행렬의 경우편집

일부 문헌에서는 에르미트 행렬이 아닐 수 있는 행렬  에 대해서도 정부호 행렬을 정의하며, 이 경우   대신 그 실수부  를 사용한다. 이 경우  의 정부호성은 그 에르미트 성분  의 좁은 의미의 정부호성과 동치이다.

예제편집

행렬  은 양의 정부호 행렬이다. 모든 복소수 벡터  에 대해,  이 되고,  이나  이 둘 다 0이 아니라면 이 값은 0보다 크다. 실수 범위에서만 생각할 경우  가 되고, 역시 모든 실수에 대해 동일한 성질이 성립한다.

반면,  부정부호 행렬이다.  에 대해서  가 되기 때문이다.

성질편집

  복소수 양의 정부호 행렬  에 대해, 다음의 성질이 항상 성립한다.

  • 고윳값이 모두 양수이다.
  • 임의의 두 벡터  에 대해  내적을 정의하는 것이 가능하다. 반대로, 복소수 벡터 공간  에서 정의할 수 있는 내적은 모두 양의 정부호 행렬에 대한 곱으로 표현이 가능하다.
  •  그람 행렬이다. 즉, 어떠한 선형 독립인 벡터  가 존재하여,  가 성립한다.
  •  이 성립하는 하삼각행렬  이 유일하게 존재한다. 이러한 분해를 촐레스키 분해라고 부른다.

같이 보기편집

각주편집

외부 링크편집