침몰 (수학)
미분기하학에서, 침몰(沈沒, 영어: submersion)은 접공간 사이의 전사 함수를 유도하는 매끄러운 함수이다. 몰입의 쌍대 개념이다.
정의
편집다음이 주어졌다고 하자.
그렇다면, 각 점 에서, 실수 선형 변환
을 정의할 수 있다. 여기서 은 의 에서의 접공간이다.
만약 가 전사 함수라면, 를 에서의 침몰이라고 하며, 를 의 정칙점(영어: regular point)이라고 한다. 만약 가 모든 에서 침몰이라면, 를 단순히 침몰이라고 한다.
성질
편집존재
편집차원 매끄러운 다양체 과 차원 매끄러운 다양체 사이에서, 정칙점을 하나 이상 갖는 매끄러운 함수 가 존재할 필요 조건은 인 것이다.
점의 원상의 매끄러운 다양체 구조
편집두 매끄러운 다양체 사이의 매끄러운 함수 가 주어졌다고 하자. 만약 에 대하여, 모든 의 원소가 정칙점이라면, 를 의 정칙치(正則値, 영어: regular value)라고 한다.
두 매끄러운 다양체 사이의 매끄러운 함수 의 정칙치 에 대하여, 은 매끄러운 다양체를 이룬다.
국소 정규 형식
편집차원 매끄러운 다양체 과 차원 매끄러운 다양체 사이의 매끄러운 함수 의 정칙점 이 주어졌다고 하자. 침몰 정리(영어: submersion theorem)에 따르면, 다음 조건을 만족시키는
가 항상 존재한다.
여기서
- 은 사영 함수이다.
예
편집임의의 두 매끄러운 다양체 , 이 주어졌을 때, 사영 함수
은 침몰이다.
보다 일반적으로, 임의의 매끄러운 벡터 다발 은 침몰이다.
참고 문헌
편집- Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. (1985). 《Singularities of Differentiable Maps: Volume 1》. Birkhäuser. ISBN 0-8176-3187-9.
- Bruce, J. W.; Giblin, P. J. (1984), 《Curves and Singularities》, Cambridge University Press, ISBN 0-521-42999-4
- Crampin, Michael; Pirani, Felix Arnold Edward (1994). 《Applicable differential geometry》. Cambridge, England: Cambridge University Press. ISBN 978-0-521-23190-9.
- do Carmo, Manfredo Perdigao (1994). 《Riemannian Geometry》. ISBN 978-0-8176-3490-2.
- Frankel, Theodore (1997). 《The Geometry of Physics》. Cambridge: Cambridge University Press. ISBN 0-521-38753-1.
- Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004). 《Riemannian Geometry》 3판. Berlin, New York: Springer-Verlag. ISBN 978-3-540-20493-0.
- Kosinski, Antoni Albert (2007) [1993]. 《Differential manifolds》. Mineola, New York: Dover Publications. ISBN 978-0-486-46244-8.
- Lang, Serge (1999). 《Fundamentals of Differential Geometry》. Graduate Texts in Mathematics. New York: Springer. ISBN 978-0-387-98593-0.
- Sternberg, Shlomo Zvi (2012). 《Curvature in Mathematics and Physics》. Mineola, New York: Dover Publications. ISBN 978-0-486-47855-5.
외부 링크
편집- Rowland, Todd. “Submersion”. 《Wolfram MathWorld》 (영어). Wolfram Research.