피타고라스 체

체론에서, 피타고라스 체(Πυθαγόρας體, 영어: Pythagorean field)는 제곱수들의 합이 제곱수인 이다.

정의편집

 의 원소 가운데 일부는 유한 개의 제곱수들의 합으로 나타낼 수 있고, 일부는 유한 개의 제곱수들의 합으로 나타낼 수 없다.  를 제곱수들의 합으로 나타낼 때 필요한 최소 개의 제곱수의 수를  라고 쓰자.

 

 피타고라스 수(Πυθαγόρας數, 영어: Pythagorean number)   의 원소에 대하여, 위 함수의 최댓값이다.

 

즉, 피타고라스 수가 유한한 체  에서, 모든 제곱수의 합은  개 이하의 제곱수들의 합으로 나타낼 수 있다.

피타고라스 수가 1인 체를 피타고라스 체(Πυθαγόρας體, 영어: Pythagorean field)라고 한다. 즉, 피타고라스 체는 제곱수들의 집합이 덧셈에 대하여 모노이드를 이루는 체이다. 즉, 다음 조건이 성립하면  를 피타고라스 체라고 한다.

 

기하학적으로, 이는 피타고라스의 정리와 유사하다. 즉, 만약  라면, 직각 삼각형에서 사이에 직각이 있는 두 변의 길이가  에 속한다면, 나머지 변도  에 속해야 한다.

 대수적 폐포  가 주어졌다고 하자. 그렇다면   속에,  를 포함하는 최소의 피타고라스 체  가 존재한다. 이를  피타고라스 폐포(Πυθαγόρας閉包, 영어: Pythagorean closure)라고 한다.

성질편집

임의의 체  에 대하여, 피타고라스 수와 수준   사이에 다음과 같은 부등식이 성립한다.[1]:261

 

모든 양의 정수  에 대하여, 피타고라스 수가  형식적 실체가 존재한다.[2]:398

형식적 실체가 아닌 체의 경우, 피타고라스 수는 다음 세 가지 가운데 하나이다.[2]:396

  •  
  •  
  •  

편집

피타고라스 수의 예는 다음과 같다.

피타고라스 수
대수적으로 닫힌 체   1
유한체   2
유리수체   4 (라그랑주 네 제곱수 정리)

참고 문헌편집

  1. Rajwade, A. R. (1993). 《Squares》. London Mathematical Society Lecture Note Series (영어) 171. Cambridge University Press. ISBN 0-521-42668-5. Zbl 0785.11022. 
  2. Lam, Tsit-Yuen (2005). 《Introduction to quadratic forms over fields》. Graduate Studies in Mathematics (영어) 67. American Mathematical Society. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023. 

외부 링크편집