균형 집합
선형대수학 및 함수해석학에서, 균형 집합(均衡集合, 영어: balanced set) 또는 원형 집합(圓形集合, 영어: circular set) 또는 원판(영어: disk 디스크[*])은 스스로의 임의의 “축소판”을 포함하는, 실수 벡터 공간 또는 복소수 벡터 공간의 부분 집합이다.
정의
편집가 실수체 또는 복소수체라고 하자. -벡터 공간 의 부분 집합 가 다음 조건을 만족시키면, 균형 집합이라고 한다.
- 임의의 스칼라 에 대하여, 만약 이라면
여기서
이다.
균형 폐포와 균형핵
편집-벡터 공간 의 임의의 부분 집합 가 주어졌을 때, 를 포함하는 가장 작은 균형 집합이 존재하며, 이를 의 균형 폐포(영어: balanced hull)라고 한다. 이는 를 포함하는 모든 균형 집합의 교집합으로 만들 수 있다. 더 구체적으로, 의 균형 폐포는
이다.
마찬가지로, -벡터 공간 의 임의의 부분 집합 가 주어졌을 때, 에 포함되는 가장 큰 균형 집합이 존재하며, 이를 의 균형핵(영어: balanced core)이라고 한다. 이는 에 포함되는 모든 균형 집합의 합집합이며, 또한 다음과 같다.
성질
편집균형 집합은 다음 연산들에 대하여 닫혀 있다.
- 균형 집합들의 합집합과 교집합은 균형 집합이다.
- 균형 집합의 폐포는 균형 집합이다.
- 균형 집합의 내부와 의 합집합은 균형 집합이다.
- 균형 집합의 선형 변환에 대한 상·원상은 균형 집합이다.
어떤 집합이 볼록하고 균형이면 그 집합은 절대 볼록 집합이다.
-위상 벡터 공간에서, 0의 모든 근방은 균형 근방을 포함하며, 0의 모든 볼록 근방은 균형 볼록 근방을 포함한다. 즉, 임의의 -위상 벡터 공간의 영벡터는 균형 집합들로 구성된 국소 기저를 가지며, 임의의 -국소 볼록 공간의 영벡터는 균형 볼록 집합들로 구성된 국소 기저를 갖는다.
예
편집반노름 공간 에서, 0을 중심으로 하는 열린 공·닫힌 공
은 균형 집합이다 ( ).
실수 벡터 공간 또는 복소수 벡터 공간의 모든 부분 공간은 균형 집합이다.
-벡터 공간 ( )들의 균형 집합 들의 곱집합 은 벡터 공간들의 직접곱 에서 균형 집합이다.
복소수체 를 1차원 복소수 벡터 공간으로 생각하자. 그 균형 집합은 정확히 다음과 같다.
이와 달리, 를 2차원 실수 벡터 공간(즉, 유클리드 공간 )으로 여기면 더 많은 균형 집합이 존재하게 된다. 위의 집합들뿐 아니라, 원점을 중심으로 하는 모든 열린/닫힌 선분도 균형 집합을 이룬다. 따라서, 와 의 벡터 공간 구조는 전적으로 다르다.[1]:6, 1.4, Example
같이 보기
편집각주
편집- ↑ Rudin, Walter (1991). 《Functional analysis》. International Series in Pure and Applied Mathematics (영어) 2판. New York, NY: McGraw-Hill. MR 1157815. Zbl 0867.46001.
- Robertson, A.P.; W.J. Robertson (1964). 《Topological vector spaces》. Cambridge Tracts in Mathematics 53. Cambridge University Press. 4쪽.
- H.H. Schaefer (1970). 《Topological Vector Spaces》. GTM 3. Springer-Verlag. 11쪽. ISBN 0-387-05380-8.