벡터 공간 와 그 쌍대 공간 에 대하여 음이 아닌 정수 m, n마다 (m, n)형의 텐서는 벡터 공간
-
의 원소로 정의된다. 여기에서 텐서곱 은 외적의 일반화로 생각하여 대략
-
-
와 같은 연산이다.
하나의 벡터 공간이 주어지면 그 쌍대 벡터 공간과 텐서곱 연산이 유일하게 정의된다. (0, 0)형의 텐서인 스칼라를 포함하여, 텐서곱을 반복하여 얻을 수 있는 벡터 공간들의 벡터를 단순히 텐서라고 한다. 따라서 모든 텐서는 어떤 벡터 공간의 스칼라 혹은 벡터이다.
아인슈타인 표기법을 사용하면 (m, n)형의 텐서는 기저 f = (e1, ..., ek)를 선택하여 m+n차원 배열
-
와 같이 나타낼 수 있다. 다른 기저 를 선택하면 기저 f에 의존하지 않는 변환 법칙
-
을 적용할 수 있다. 여기에서 m을 이 텐서의 반변 계수(contravariant rank), n을 공변 계수(covariant rank)라 하며 m+n을 총 계수(total rank)라 한다.
기저의 선택에 의존하는 행렬, 위치벡터, 유사텐서 등은 텐서의 표현 방식이며, 기저의 선택이 없으면 텐서가 아니다. 마찬가지로 위치벡터 또한 기저의 선택이 없으면 벡터가 아니기 때문에, 모든 벡터 공간의 스칼라 혹은 벡터가 어떤 텐서라는 사실은 변하지 않는다.
하나의 벡터 공간에서 얻을 수 있는 벡터 공간들의 원소를 아래와 같이 분류할 수 있다. 물리학과 공학 등에서는 각 점마다 텐서가 하나씩 붙어 있는 공간, 즉 텐서장을 텐서라고 부르기도 한다.
- 위키미디어 공용에 텐서 관련 미디어 분류가 있습니다.