주 메뉴 열기

이름 (강제법)

집합론에서, 이름(영어: name)은 강제법에 등장하는, 집합의 개념의 일종의 일반화인 누적 위계이다. 집합의 경우 무언가가 집합의 원소인지 여부는 참 또는 거짓이지만, 무언가가 이름의 원소인지 여부는 보다 일반적인 원순서 집합 또는 완비 불 대수의 원소에 따라 나타내어진다.

정의편집

이름편집

임의의 집합  가 주어졌다고 하자. 그렇다면, 연산

 

에 대한 누적 위계 -이름 위계(영어: hierarchy of  -names)라고 하며,[1]:188, Definition VII.2.5  로 표기한다. 이 개념은 강제법에 핵심적으로 사용된다.

임의의 두 이름  에 대하여,  의 "참·거짓 여부"는 다음과 같은  의 부분 집합으로 나타내어진다.

 

즉, 이 경우 참·거짓 여부가 (고전 논리의) 2원소 불 대수   대신 불 대수  로 나타내어진다.

임의의 순서수  에 대하여, 다음과 같은 함수를 정의하자.

 
 

좋은 이름편집

원순서 집합   -이름  가 주어졌다고 하자. 또한, 함수  치역의 모든 원소가  강상향 반사슬이라고 하자. 이 경우, 다음과 같은 이름을 구성할 수 있다.

 

이러한 꼴의 이름을  에 대한 좋은 이름(영어: nice name)이라고 한다.[1]:208, Definition VII.5.11

특히,  에 대한 좋은 이름  가 주어졌을 때, 다음이 성립한다.

 

성질편집

범주론적 성질편집

임의의 순서수  에 대하여,  함자를 이룬다. 구체적으로, 임의의 함수  에 대하여,

 

이다.

보다 일반적으로,  이 집합과 이항 관계범주일 때, 다음과 같은 함자가 존재한다.

 
 

임의의 부분 집합  한원소 집합  에 대하여, 다음과 같은 이항 관계  를 생각하자.

 

그렇다면, 함수

 

를 생각하자. 이를  -이름의  -해석이라고 하며,

 

로 표기한다.[1]:189, Definition VII.2.7

강제법에서,  포괄적 순서 아이디얼  를 사용하여 정의한 확장된 원소를 나타낸다.

모형 이론적 성질편집

이름의 개념은 ZFC표준 추이적 모형에 대하여 절대적이다.[1]:188, §VII.2 즉, ZFC표준 추이적 모형    및 집합  에 대하여, 다음이 성립한다.

 

다시 말해,  이다. 마찬가지로, 좋은 이름의 개념은 절대적이다.[1]

ZFC표준 추이적 모형  원순서 집합   및 두 이름  에 대하여, 다음이 성립하는  -좋은 이름  가 존재한다.

 

다시 말해, 임의의  포괄적 순서 아이디얼    에 대하여,   -좋은 이름  가 존재한다. (그러나 그 역은 일반적으로 성립하지 않는다. 즉, 만약   -좋은 이름일 때,  일 필요는 없다.[1]:209)

편집

만약  공집합이라면  이다.

만약  한원소 집합이라면  멱집합 연산과 동형이며, 이름 위계는 폰 노이만 전체와 동형이다. 이에 따라 이름 위계는 폰 노이만 전체의 확장으로 여길 수 있다.

참고 문헌편집

  1. Kunen, Kenneth (1980). 《Set theory: an introduction to independence proofs》 (영어). North-Holland. ISBN 0-444-85401-0.